File size: 68,259 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
#!/usr/bin/env python3
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.


import math
import re
from functools import partial
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
from fairseq.models import (
    FairseqEncoder,
)
from fairseq.models.speech_to_text.utils import (
    NoOp,
    lengths_to_padding_mask,
    segments_to_sequence,
)
from fairseq.models.speech_to_text.utils import (
    attention_suppression,
    layer_norm_backward_hook,
)
from torch import Tensor, device as Device
from torch.quantization.qconfig import (
    default_dynamic_qconfig,
    per_channel_dynamic_qconfig,
)


class RelativePositionEmbedding(nn.Module):
    """
    Implementation according to https://arxiv.org/abs/1803.02155
    """

    def __init__(self, head_dim, max_position, norm_init=True):
        super().__init__()
        self.head_dim = head_dim
        self.max_position = max_position
        self.embeddings = nn.Parameter(torch.Tensor(max_position * 2 + 1, head_dim))
        if norm_init:
            nn.init.xavier_normal_(self.embeddings)
        else:
            nn.init.xavier_uniform_(self.embeddings)

    def forward(self, input: Tensor):
        output = nn.functional.embedding(input.long(), self.embeddings)
        return output


class Fp32LayerNorm(nn.Module):
    def __init__(
        self,
        input_dim,
        clamp_grad=True,
        max_grad_value=256,
        eps=1e-5,
        elementwise_affine=True,
    ):
        super().__init__()
        self.torch_module = torch.nn.LayerNorm(
            input_dim, eps=eps, elementwise_affine=elementwise_affine
        )
        if clamp_grad:
            hook = partial(layer_norm_backward_hook, clamp_value=max_grad_value)
            self.torch_module.register_backward_hook(hook)

    def forward(self, input):
        output = torch.nn.functional.layer_norm(
            input.float(),
            self.torch_module.normalized_shape,
            self.torch_module.weight.float()
            if self.torch_module.weight is not None
            else None,
            self.torch_module.bias.float()
            if self.torch_module.bias is not None
            else None,
            self.torch_module.eps,
        ).type_as(input)
        return output


# ------------------------------------------------------------------------------
#   PositionwiseFF
# ------------------------------------------------------------------------------


class PositionwiseFF(nn.Module):
    """
    FFN layer in transformer.

    Args:
        input_dim: input embedding dimension
        ffn_dim: FFN layer inner dimension
        dropout_on_fc1: dropout for first linear layer
        dropout_on_fc2: dropout fr second linear layer
        activation_fn: activation function used after first linear layer. \
                Only relu or gelu is supported.

    """

    def __init__(
        self, input_dim, ffn_dim, dropout_on_fc1, dropout_on_fc2, activation_fn
    ):
        super(PositionwiseFF, self).__init__()

        self.input_dim = input_dim
        self.ffn_dim = ffn_dim
        if activation_fn == "relu":
            ac = nn.ReLU()
        elif activation_fn == "gelu":
            ac = nn.GELU()
        else:
            raise ValueError("Unsupported activation_fn = ({})".format(activation_fn))

        # fc1 -> ac -> dropout -> fc2 -> dropout
        self.module = nn.Sequential(
            nn.Linear(input_dim, ffn_dim),
            ac,
            nn.Dropout(dropout_on_fc1),
            nn.Linear(ffn_dim, input_dim),
            nn.Dropout(dropout_on_fc2),
        )

        self.layer_norm = Fp32LayerNorm(input_dim)

    def forward(self, input):
        module_out = self.module(self.layer_norm(input))
        output = module_out + input

        return output

    def quantize_(self, params=None):
        if params and "per_channel" in params and params["per_channel"]:
            qconfig = per_channel_dynamic_qconfig
        else:
            qconfig = default_dynamic_qconfig
        torch.quantization.quantize_dynamic(
            self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True
        )
        return self


# ------------------------------------------------------------------------------
#   SummarizationLayer
# ------------------------------------------------------------------------------


class SummarizationLayer(nn.Module):
    def __init__(self, method, segment_size, embedding_dim):
        super(SummarizationLayer, self).__init__()
        self.segment_size = segment_size
        self.embedding_dim = embedding_dim
        nonlin_match = re.match(r"nonlinear\((?P<act>[a-z]+),(?P<dim>[0-9]+)\)", method)
        self.method = method
        if method == "mean":
            self.module = nn.AvgPool1d(
                kernel_size=segment_size,
                stride=segment_size,
                ceil_mode=True,
            )
        elif method == "max":
            self.module = nn.MaxPool1d(
                kernel_size=segment_size,
                stride=segment_size,
                ceil_mode=True,
            )
        elif method == "linear":
            self.module = nn.Linear(segment_size, 1)
        elif nonlin_match:
            nonlin_args = nonlin_match.groupdict()
            act_type = nonlin_args["act"]
            hid_dim = int(nonlin_args["dim"])
            if act_type == "relu":
                act = nn.ReLU()
            elif act_type == "gelu":
                act = nn.GELU()
            else:
                raise ValueError("Unsupported activation_fn = ({})".format(act_type))
            self.module = nn.Sequential(
                nn.Linear(segment_size, hid_dim),
                act,
                nn.Linear(hid_dim, 1),
            )
        else:
            raise ValueError("Unsupported summarization method = ({})".format(method))

    def forward(self, input):
        # T, B, D -> B, D, T
        input = input.permute(1, 2, 0)

        if self.method == "mean" or self.method == "max":
            output = self.module(input)
            output = output.permute(2, 0, 1)
            return output

        full_seg_length = input.size(2) // self.segment_size * self.segment_size
        if full_seg_length > 0:
            # at least one seg is full
            B = input.size(0)
            D = input.size(1)
            input_todo = (
                input[:, :, :full_seg_length]
                .contiguous()
                .view(B, -1, self.segment_size)
            )
            output = self.module(input_todo)
            output = output.view(B, D, -1)
        else:
            output = input.new_zeros(input.size(0), input.size(1), 0)
        left = input.size(2) - full_seg_length
        if left > 0:
            # when last seg is not full, use zeros as last memory placeholder
            zeros = input.new_zeros(input.size(0), input.size(1), 1)
            output = torch.cat([output, zeros], dim=2)
        output = output.permute(2, 0, 1)
        return output


# ------------------------------------------------------------------------------
#   NoSegAugmentedMemoryMultiheadAttentionBmm
# ------------------------------------------------------------------------------


class NoSegAugmentedMemoryMultiheadAttentionBmm(nn.Module):
    """
    Whole utterance augmented memory multihead attention using BMM.

    Different with previous augmented memory multihead attention where
    the utterance is chunked into segments. Here we use attention mask
    achieve so. The input embedding [right_context, utterance, summary]
    is a concatenation of right context, utterance and summary.

    Right context block is the concatenation of all the right context for
    each segments. [right_context_0, right_context_1, ..., right_context_n]
    For example, if we have utterance = [v0, v1, v2, ...., v20]. segment
    size 8, right_context size 4. Then the right context blocks =
    [v8, v9, v10, v11, v16, v17, v18, v19, 0, 0, 0, 0], where v8, v9, v10,
    and v11 are the right context for first segment. v16, v17, v18 and v19
    are the right context for second segment. 0, 0, 0 and 0 are right context
    for the last segment.

    utterance is corresponding to input embedding sequence

    summary is concatenation of average of each segments. [summary_0,
    summary_1, ..., ].

    In augmented memory multihead attention, the query is [right_context,
    utterance, summary], key is [memory, right_context, utterance]. Different
    with AugmentedMemoryMultiheadAttentionBmm, memory here is passed from
    previous attention layer. For the first attention layer, memory is average
    of each segment.

    Memory is a concatenation of memory from each segments in previous attention
    layer. For example, current layer is i, then memory is [m_0, m_1, ..., m_n].
    Each m_k is the output from seg_k in layer i-1.

    args:
        input_dim: input embedding dimension
        num_heads: number of heads in multihead self-attention
        dropout: attention dropout
        std_scale: if std_scale is not None. The weak attention suppression is
            turned on. For std_scale = 0.5, all the attention smaller than
            mean + 0.5 * std will be suppressed.
        scaled_init: whether to use scaled init for linear weight
        tanh_on_mem: whether to use tanh on memory output
        use_mem: whether to use memory or not. When max_memory_size is 0, then
            we don't have memory anymore.
        layer_index: current self-attention layer index that is used in depth
            initialization
        max_relative_position: max relative position used in relative position
            embedding
        rpe_old_option: To be compatible with previous model. The previous model
            was trained with attention += attention + rpe. The correct equation
            should be attention = attention + rpe

    """

    def __init__(
        self,
        input_dim,
        num_heads,
        dropout=0.0,
        std_scale=None,
        scaled_init=False,
        tanh_on_mem=False,
        use_mem=True,
        mini_batches=False,
        negative_inf="-inf",
        layer_index=-1,
        max_relative_position=0,
        rpe_old_option=True,
    ):
        if input_dim % num_heads:
            raise ValueError(
                "input_dim ({}) must be divisible by num_heads ({})".format(
                    input_dim, num_heads
                )
            )

        super().__init__()

        embed_dim = input_dim
        self.e2h_kv = torch.nn.Linear(input_dim, 2 * input_dim, bias=True)
        self.e2h_q = torch.nn.Linear(input_dim, input_dim, bias=True)
        self.rpe_old_option = rpe_old_option
        if max_relative_position > 0:
            self.use_rpe = True
            self.rpe_k = RelativePositionEmbedding(
                head_dim=input_dim // num_heads,
                max_position=max_relative_position,
            )
            self.rpe_v = RelativePositionEmbedding(
                head_dim=input_dim // num_heads,
                max_position=max_relative_position,
            )
        else:
            self.use_rpe = False
            self.rpe_k = None
            self.rpe_v = None
        if scaled_init:
            if layer_index == -1:
                gain = 1.0 / math.sqrt(2)
            else:
                # https://arxiv.org/abs/2005.09684 depthwise initialization
                # stablize the training greatly. Use depthwise initialization to
                # replace incremental loss.
                gain = 1.0 / math.sqrt(layer_index + 1)
            torch.nn.init.xavier_uniform_(self.e2h_kv.weight, gain=gain)
            torch.nn.init.xavier_uniform_(self.e2h_q.weight, gain=gain)

        self.out_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True)

        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout

        self.head_dim = embed_dim // num_heads
        self.scaling = self.head_dim ** -0.5

        self.std_scale = std_scale
        self.use_mem = use_mem
        self.mini_batches = mini_batches
        self.negative_inf = negative_inf

        if tanh_on_mem:
            self.squash_mem = torch.tanh
            self.nonlinear_squash_mem = True
        else:
            self.squash_mem = NoOp()
            self.nonlinear_squash_mem = False

    def prepare_qkv(
        self,
        input: Tensor,
        mems: Tensor,
        lengths: Tensor,
        summary_length: int,
        lc_length: int,
    ):
        # T: right_context length + utterance_length  + summary_length
        T, B, D = input.shape
        mem_length = mems.size(0)
        utterance_length = torch.max(lengths)

        right_context_blocks_length = T - utterance_length - summary_length
        rc_block = input[:right_context_blocks_length, :, :]
        utterance_block = input[right_context_blocks_length : T - summary_length, :, :]

        if B == 1:
            padding_mask = None
        else:
            klengths = lengths + mem_length + right_context_blocks_length + lc_length
            padding_mask = lengths_to_padding_mask(lengths=klengths)

        mem_rc_input = torch.cat([mems, rc_block, utterance_block], dim=0)

        # In training lc_length = 0
        key_length = mem_rc_input.size(0) + lc_length
        rc_input_sum = input
        q = self.e2h_q(rc_input_sum)
        kv = self.e2h_kv(mem_rc_input)
        k, v = kv.chunk(chunks=2, dim=2)
        result_qkv = (q, k, v)
        input_shape = (T, B, D)
        result_lengths_info = (
            mem_length,
            utterance_length,
            right_context_blocks_length,
            key_length,
        )
        if padding_mask is not None:
            assert padding_mask.size(0) == B
            assert padding_mask.size(1) == key_length

        return result_qkv, input_shape, result_lengths_info, padding_mask

    def prepare_attention_weights(
        self,
        q: Tensor,
        new_k: Tensor,
        new_v: Tensor,
        input_shape: Tuple[int, int, int],
        rpe: Optional[Tensor],
    ) -> Tuple[Tensor, Tensor, Tensor]:
        T, B, D = input_shape
        q = (
            q.contiguous().view(-1, B * self.num_heads, self.head_dim).transpose(0, 1)
            * self.scaling
        )

        k = (
            new_k.contiguous()
            .view(-1, B * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )

        v = (
            new_v.contiguous()
            .view(-1, B * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )

        attention_weights = torch.bmm(q, k.transpose(1, 2))
        if self.use_rpe and rpe is not None and self.rpe_v is not None:
            r_k = self.rpe_k(rpe)
            # [q, B*h, d] * [q, k, d] -> [B*h, q, k]
            attention_weights_rpe = torch.matmul(
                q.transpose(0, 1), r_k.transpose(1, 2)
            ).transpose(0, 1)
            attention_weights = attention_weights + attention_weights_rpe
        attention_weights_float = attention_weights.float()

        return attention_weights, attention_weights_float, v

    def prepare_attention_output(
        self,
        attention_weights: Tensor,
        attention_weights_float: Tensor,
        v: Tensor,
        input_shape: Tuple[int, int, int],
        key_length: int,
        padding_mask: Optional[Tensor],
        rpe: Optional[Tensor],
    ) -> Tensor:
        T, B, D = input_shape
        if padding_mask is not None:
            attention_weights_float = attention_weights_float.view(
                B, self.num_heads, T, key_length
            )
            attention_weights_float = attention_weights_float.masked_fill(
                padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf")
            )
            attention_weights_float = attention_weights_float.view(
                B * self.num_heads, T, key_length
            )

        if self.std_scale is not None:
            attention_weights_float = attention_suppression(
                attention_weights_float, self.std_scale
            )

        attention_weights_float = torch.nn.functional.softmax(
            attention_weights_float, dim=-1
        )
        attention_weights = attention_weights_float.type_as(attention_weights)

        attention_probs = torch.nn.functional.dropout(
            attention_weights, p=self.dropout, training=self.training
        )

        # [T, key_length, B, n_head]+ [key_length, B, n_head, d_head]
        # -> [T, B, n_head, d_head]
        attention = torch.bmm(attention_probs, v)
        if self.use_rpe and rpe is not None and self.rpe_v is not None:
            r_v = self.rpe_v(rpe)
            attention_rpe = torch.matmul(
                attention_probs.transpose(0, 1), r_v
            ).transpose(0, 1)

            if self.rpe_old_option:
                attention += attention + attention_rpe
            else:
                attention = attention + attention_rpe

        assert list(attention.shape) == [B * self.num_heads, T, self.head_dim]

        attention = attention.transpose(0, 1).contiguous().view(T, B, self.embed_dim)

        rc_output_memory = self.out_proj(attention)
        return rc_output_memory

    @torch.jit.unused
    def forward(
        self,
        input: Tensor,
        lengths: Tensor,
        mems: Tensor,
        attention_mask: Tensor,
        pre_mems: Optional[Tensor] = None,
        left_context_key: Optional[Tensor] = None,
        left_context_val: Optional[Tensor] = None,
        rpe: Optional[Tensor] = None,
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        """
        forward function for NoSegAugmentedMemoryMultiheadAttentionBmm in training.

        args:
            input: formed in the following way
                [right_context_0, right_contex_1, ..., seg_0, seg_1,
                ..., summary_0, summary_1,..]
            lengths: the length of query which is [seg_0, seg_1, ....]
            mems: [mem_0, mem_1, ...].
            attention_mask: attention mask for query = [right_context, query, summary]
                key = [mem, right_context, query]. This is only used for traing.

        """
        if self.use_mem:
            mem_length = mems.size(0)
            summary_length = mem_length + 1
            if pre_mems is not None:
                mems = torch.cat([pre_mems, mems], dim=0)
        else:
            mem_length = 0
            summary_length = 0

        # In training, lc_length = 0
        if left_context_key is not None:
            lc_length = left_context_key.size(0)
        else:
            lc_length = 0
        results = self.prepare_qkv(
            input=input,
            mems=mems,
            lengths=lengths,
            summary_length=summary_length,
            lc_length=lc_length,
        )
        result_qkv, input_shape, result_lengths_info, padding_mask = results
        q, k, v = result_qkv
        (
            mem_length,
            utterance_length,
            right_context_blocks_length,
            key_length,
        ) = result_lengths_info

        if left_context_key is not None:
            # add the cache key and value
            new_k = torch.cat(
                [
                    k[: mem_length + right_context_blocks_length, :, :],
                    left_context_key,
                    k[-utterance_length:, :, :],
                ],
                dim=0,
            )
            new_v = torch.cat(
                [
                    v[: mem_length + right_context_blocks_length, :, :],
                    left_context_val,
                    v[-utterance_length:, :, :],
                ],
                dim=0,
            )
            next_k = new_k[mem_length + right_context_blocks_length :, :, :]
            next_v = new_v[mem_length + right_context_blocks_length :, :, :]
        else:
            new_k = k
            new_v = v
            next_k = None
            next_v = None

        attention_weights, attention_weights_float, v = self.prepare_attention_weights(
            q=q,
            new_k=new_k,
            new_v=new_v,
            input_shape=input_shape,
            rpe=rpe,
        )

        # mask attention
        attention_mask = attention_mask.unsqueeze(0)
        attention_weights_float = attention_weights_float.masked_fill(
            attention_mask, float(self.negative_inf)
        )

        rc_output_memory = self.prepare_attention_output(
            attention_weights=attention_weights,
            attention_weights_float=attention_weights_float,
            v=v,
            input_shape=input_shape,
            key_length=key_length,
            padding_mask=padding_mask,
            rpe=rpe,
        )

        if self.use_mem:
            # next_m length equals to summary length - 1
            # last memory is ignored
            if self.mini_batches:
                next_m = rc_output_memory[-summary_length:]
            else:
                next_m = rc_output_memory[-summary_length:-1]

            next_m = self.squash_mem(next_m)
            # rc and output
            rc_output = rc_output_memory[:-summary_length]
            if not self.nonlinear_squash_mem:
                next_m = torch.clamp(next_m, min=-10, max=10)
        else:
            next_m = mems
            rc_output = rc_output_memory

        return rc_output, next_m, next_k, next_v

    @torch.jit.export
    def forward_jit(
        self,
        input: Tensor,
        lengths: Tensor,
        mems: Tensor,
        left_context_key: Tensor,
        left_context_val: Tensor,
        rpe: Optional[Tensor],
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        """
        forward function for NoSegAugmentedMemoryMultiheadAttentionBmm in decoding.

        args:
            input: formed in the following way
                [right_context_0, right_contex_1, ..., seg_0, seg_1,
                ..., summary_0, summary_1,..]
            lengths: the length of query which is [seg_0, seg_1, ....]
            mems: [mem_0, mem_1, ...].
            left_context_key: left_context for key part. This is only used for online
                decoding. In training, this is empty tensor
            left_context_val: left_context for value part. This is only used for online
                decoding. In training, this is empty tensor

        """
        lc_length = left_context_key.size(0)

        # In decoding, summary_length = 1 or 0
        if self.use_mem:
            summary_length = 1
        else:
            summary_length = 0

        results = self.prepare_qkv(
            input=input,
            mems=mems,
            lengths=lengths,
            summary_length=summary_length,
            lc_length=lc_length,
        )
        result_qkv, input_shape, result_lengths_info, padding_mask = results
        q, k, v = result_qkv
        (
            mem_length,
            utterance_length,
            right_context_blocks_length,
            key_length,
        ) = result_lengths_info

        # add the cache key and value
        new_k = torch.cat(
            [
                k[: mem_length + right_context_blocks_length, :, :],
                left_context_key,
                k[-utterance_length:, :, :],
            ],
            dim=0,
        )
        new_v = torch.cat(
            [
                v[: mem_length + right_context_blocks_length, :, :],
                left_context_val,
                v[-utterance_length:, :, :],
            ],
            dim=0,
        )
        next_k = new_k[mem_length + right_context_blocks_length :, :, :]
        next_v = new_v[mem_length + right_context_blocks_length :, :, :]

        attention_weights, attention_weights_float, v = self.prepare_attention_weights(
            q=q,
            new_k=new_k,
            new_v=new_v,
            input_shape=input_shape,
            rpe=rpe,
        )
        # In online decoding, we don't have attention mask. But we still need
        # to disable the attention from summary query to memory
        attention_weights_float[:, -1, :mem_length] = float(self.negative_inf)
        rc_output_memory = self.prepare_attention_output(
            attention_weights=attention_weights,
            attention_weights_float=attention_weights_float,
            v=v,
            input_shape=input_shape,
            key_length=key_length,
            padding_mask=padding_mask,
            rpe=rpe,
        )

        # In decoding, summary length is 1
        if self.use_mem:
            next_m = rc_output_memory[-1:]
            next_m = self.squash_mem(next_m)
            # rc and output
            rc_output = rc_output_memory[:-1]
            if not self.nonlinear_squash_mem:
                next_m = torch.clamp(next_m, min=-10, max=10)
        else:
            rc_output = rc_output_memory
            # empty tensor as input mems
            next_m = mems

        return rc_output, next_m, next_k, next_v

    def quantize_(self, params=None):
        if params and "per_channel" in params and params["per_channel"]:
            qconfig = per_channel_dynamic_qconfig
        else:
            qconfig = default_dynamic_qconfig
        torch.quantization.quantize_dynamic(
            self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True
        )
        return self


class NoSegAugmentedMemoryTransformer(nn.Module):
    """
    Whole utterance augmented memory transformer.

    This is not pyspeech nn layer. It is used as a module in a master layer where
    multiple transformers is used.
    """

    def __init__(
        self,
        input_dim,
        num_heads,
        ffn_dim,
        dropout_in_attn=0.0,
        dropout_on_attn=None,
        dropout_on_fc1=None,
        dropout_on_fc2=None,
        activation_fn="relu",
        tanh_on_mem=False,
        std_scale=None,
        scaled_init=False,
        segment_size=128,
        use_mem=True,
        mini_batches=False,
        negative_inf="-inf",
        layer_index=-1,
        summarization_method="mean",
        max_relative_position=0,
        rpe_old_option=True,
    ):
        super(NoSegAugmentedMemoryTransformer, self).__init__()

        self.attention = NoSegAugmentedMemoryMultiheadAttentionBmm(
            input_dim=input_dim,
            num_heads=num_heads,
            dropout=dropout_in_attn,
            scaled_init=scaled_init,
            tanh_on_mem=tanh_on_mem,
            std_scale=std_scale,
            use_mem=use_mem,
            mini_batches=mini_batches,
            negative_inf=negative_inf,
            layer_index=layer_index,
            max_relative_position=max_relative_position,
        )
        self.dropout = nn.Dropout(dropout_on_attn)
        self.pos_ff = PositionwiseFF(
            input_dim=input_dim,
            ffn_dim=ffn_dim,
            dropout_on_fc1=dropout_on_fc1,
            dropout_on_fc2=dropout_on_fc2,
            activation_fn=activation_fn,
        )
        self.layer_norm_pre = Fp32LayerNorm(input_dim)
        self.layer_norm = Fp32LayerNorm(input_dim)
        self.segment_size = segment_size
        self.use_mem = use_mem

        self.memory_op = SummarizationLayer(
            summarization_method, segment_size, input_dim
        )

    def set_mini_batches(self, mini_batches):
        self.attention.mini_batches = mini_batches

    def gen_summary_queries(self, input):
        sum_input = self.memory_op(input)
        return sum_input

    def pre_attention_ops(self, input, right_context_blocks):
        rc_length = right_context_blocks.size(0)
        input_length = input.size(0)

        rc_and_input = torch.cat([right_context_blocks, input], dim=0)
        residual_input = rc_and_input
        rc_and_input = self.layer_norm_pre(rc_and_input)

        query_input = rc_and_input[-input_length:, :, :]
        return rc_length, input_length, residual_input, query_input, rc_and_input

    def after_attention_ops(self, attention_output, residual_input):
        output = self.dropout(attention_output)
        output = output + residual_input
        output = self.pos_ff(output)
        output = self.layer_norm(output)
        return output

    @torch.jit.export
    def forward_jit(
        self,
        input: Tensor,
        lengths: Tensor,
        mems: Tensor,
        left_context_key: Tensor,
        left_context_val: Tensor,
        right_context_blocks: Tensor,
        rpe: Optional[Tensor],
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:

        results = self.pre_attention_ops(input, right_context_blocks)
        rc_length, input_length, residual_input, query_input, rc_and_input = results

        # In online decoding, the summary query size is always 1 or 0
        if self.use_mem:
            summary_query = self.gen_summary_queries(query_input)
            summary_query = summary_query[0:1, :, :]
            rc_qu_su = torch.cat([rc_and_input, summary_query], dim=0)
        else:
            rc_qu_su = rc_and_input

        rc_output, next_m, next_k, next_v = self.attention.forward_jit(
            input=rc_qu_su,
            lengths=lengths,
            mems=mems,
            left_context_key=left_context_key,
            left_context_val=left_context_val,
            rpe=rpe,
        )
        rc_output = self.after_attention_ops(rc_output, residual_input)
        results = (
            rc_output[-input_length:, :, :],
            next_m,
            rc_output[0:rc_length, :, :],
            next_k,
            next_v,
        )
        return results

    @torch.jit.unused
    def forward(
        self,
        input,
        lengths,
        mems,
        right_context_blocks,
        attention_mask,
        pre_mems,
        left_context_key,
        left_context_val,
        rpe,
    ):

        results = self.pre_attention_ops(input, right_context_blocks)
        rc_length, input_length, residual_input, query_input, rc_and_input = results
        if self.use_mem:
            summary_query = self.gen_summary_queries(query_input)
            rc_qu_su = torch.cat([rc_and_input, summary_query], dim=0)
        else:
            rc_qu_su = rc_and_input

        rc_output, next_m, next_k, next_v = self.attention(
            input=rc_qu_su,
            lengths=lengths,
            mems=mems,
            attention_mask=attention_mask,
            pre_mems=pre_mems,
            left_context_key=left_context_key,
            left_context_val=left_context_val,
            rpe=rpe,
        )

        # [TODO] Note memory did not go through pos_ff. What happen if we pass
        # memory through the pos_ff as well?
        rc_output = self.after_attention_ops(rc_output, residual_input)
        results = (
            rc_output[-input_length:, :, :],
            next_m,
            rc_output[0:rc_length, :, :],
            next_k,
            next_v,
        )

        return results


class NoSegAugmentedMemoryTransformerEncoderLayer(FairseqEncoder):
    """
    Whole utterance augmented memory transformer encoder layer. This is a master layer
    where we can define multiple augmented memory transformers. There are two reasons
    to setup the master layer.
    1. We only need to define once about the attention mask. All the layers in the master
       layer share the same mask.
    2. pyspeech nn layer has special input and output format. Defining one master layer is
       easier to passing memory between different layes inside the master layer

    args:
        input_dim: input embedding dimension
        num_heads: number of heads in multihead self-attention
        ffn_dim: ffn dimension in FFN layer
        num_layers: number of augmented memory transformer layers
        dropout_in_attn: dropout used in multi-head self-attention
        dropout_on_attn: dropout used for output from te multihead self-attention
        dropout_on_fc1: dropout used in FFN layer for the first linear layer
        dropout_on_fc2: dropout used in FFN layer for the second linear layer
        segment_size: segment size for each segment
        context_config: (left_context_size, right_context_size) defines the surround context size
            for each segment
        max_memory_size: maximum memory size used for each segment
        scaled_init: whether use scaled init for weight initialization in attention layer
        std_scale: if std_scale is not None. The weak attention suppression is
            turned on. For std_scale = 0.5, all the attention smaller than
            mean + 0.5 * std will be suppressed.
        activation_fn: activation function used in FFN layer. [ReLU, GELU] supported
        tanh_on_mem: whether use tanh on memory
        mini_batches: use mini-btach training
        negative_inf: the negative infinity value used in attention masking. default is "-inf".
            For some situation, e.g. LM. it is better to use "-1e8" to avoid nan issue.
        summarization_method: method to generate segment summrization embedding
        max_relative_position: max relatie position for relative position embedding
        rpe_old_option: To be compatible with previous model. The previous model
            was trained with attention += attention + rpe. The correct equation
            should be attention = attention + rpe
        [TODO]: remove the rpe_old_option by the end of 2021 Q1.

    """

    def __init__(
        self,
        input_dim,
        num_heads,
        ffn_dim,
        num_layers=1,
        dropout_in_attn=0.0,
        dropout_on_attn=0.0,
        dropout_on_fc1=0.0,
        dropout_on_fc2=0.0,
        segment_size=128,
        context_config=(0, 0),
        max_memory_size=0,
        scaled_init=True,
        std_scale=None,
        activation_fn="relu",
        tanh_on_mem=False,
        mini_batches=False,
        negative_inf="-inf",
        deep_init=True,
        summarization_method="mean",
        max_relative_position=0,
        rpe_old_option=True,
    ):
        super().__init__(None)
        if input_dim % num_heads:
            raise ValueError(
                "input_dim ({}) must be divisible by num_heads ({})".format(
                    input_dim, num_heads
                )
            )

        # we used to support growing memory size. However, it will cause
        # cross stream batching failure. Now we need to have exact max memory size
        if max_memory_size < 0:
            raise ValueError("max_memory_size must be >= 0")

        # Only assign right_context. In decoding, left context will be cached.
        # No need to let the online decoder to re-assign the left context
        self.left_context, self.right_context = context_config
        self.segment_size = segment_size
        self.memory_dim = input_dim
        self.max_memory_size = max_memory_size
        self.mini_batches = mini_batches
        if self.max_memory_size != 0:
            self.use_mem = True
        else:
            self.use_mem = False

        self.memory_op = SummarizationLayer(
            summarization_method, segment_size, input_dim
        )

        self.layers = torch.nn.ModuleList()
        self.num_layers = num_layers
        self.max_relative_position = max_relative_position
        if self.max_relative_position > 0:
            self.use_rpe = True
        else:
            self.use_rpe = False
        for i in range(self.num_layers):
            if deep_init:
                layer_index = i
            else:
                layer_index = -1

            self.layers.append(
                NoSegAugmentedMemoryTransformer(
                    num_heads=num_heads,
                    input_dim=input_dim,
                    ffn_dim=ffn_dim,
                    dropout_in_attn=dropout_in_attn,
                    dropout_on_attn=dropout_on_attn,
                    dropout_on_fc1=dropout_on_fc1,
                    dropout_on_fc2=dropout_on_fc2,
                    segment_size=segment_size,
                    std_scale=std_scale,
                    activation_fn=activation_fn,
                    tanh_on_mem=tanh_on_mem,
                    scaled_init=scaled_init,
                    use_mem=self.use_mem,
                    mini_batches=mini_batches,
                    negative_inf=negative_inf,
                    layer_index=layer_index,
                    summarization_method=summarization_method,
                    max_relative_position=max_relative_position,
                    rpe_old_option=rpe_old_option,
                )
            )

    def set_mini_batches(self, mini_batches):
        # handy function only used for unit test
        self.mini_batches = mini_batches
        for layer in self.layers:
            layer.set_mini_batches(mini_batches)

    def _get_relative_position(
        self,
        input: Tensor,
        max_relative_position: int,
        left_context_length: int,
        past_length: int,
        is_decoding: bool,
    ):
        # For training, we copy the right context to the start of the utterance
        # First dimension in distance is corresponding to query.
        # [right context, utterance, summary vector]
        # Second dimension in distance is corresponding to key.
        # [Memory bank, right context, utterance]
        # For summary vector in query part, the distance with
        # all other position is 2*max_position. For memory bank in key,
        # the distance with all other positions is 0.

        T, B, D = input.shape
        num_segs = math.ceil((T - self.right_context) / self.segment_size)

        # utterance
        u_st = past_length * self.segment_size
        u_ed = u_st + T
        utterance_ranges = torch.arange(u_st, u_ed - self.right_context)

        # left context. Only in minibatch or decoding
        left_context_ranges = torch.arange(u_st - left_context_length, u_st)

        # Right context block
        # right context + utterance
        right_context_blocks = []
        for i in range(0, num_segs - 1):
            st = (i + 1) * self.segment_size + u_st
            ed = st + self.right_context
            assert ed < u_ed
            temp = torch.arange(st, ed)
            right_context_blocks.append(temp)
        right_context_blocks.append(torch.arange(u_ed - self.right_context, u_ed))
        right_context_ranges = torch.cat(right_context_blocks)

        if self.use_mem:
            # Memory bank
            # The position for memory -n, .., -1
            if is_decoding:
                memory_size = min(past_length, self.max_memory_size)
            else:
                memory_size = num_segs + past_length - 1
            memory_bank_ranges = torch.arange(
                -max_relative_position - 1, -max_relative_position - 1 - memory_size, -1
            )

            # summary vector
            # The position for summary vector as the T+max_relative_position+1.
            # After the clamping, the relative position is max_relative_position
            summary_pos_st = u_ed + max_relative_position + 1
            summary_vector_ranges = torch.arange(
                summary_pos_st, summary_pos_st + num_segs
            )

            key_ranges = torch.cat(
                [
                    memory_bank_ranges,
                    right_context_ranges,
                    left_context_ranges,
                    utterance_ranges,
                ]
            )

            query_ranges = torch.cat(
                [right_context_ranges, utterance_ranges, summary_vector_ranges]
            )
        else:
            key_ranges = torch.cat(
                [right_context_ranges, left_context_ranges, utterance_ranges]
            )

            query_ranges = torch.cat([right_context_ranges, utterance_ranges])

        distance = key_ranges[None, :] - query_ranges[:, None]
        distance_clamp = (
            torch.clamp(distance, -max_relative_position, max_relative_position)
            + max_relative_position
        )
        distance_clamp = distance_clamp.to(input.device).long().detach()
        return distance_clamp

    def _get_attention_mask(self, input, past_length=0, left_context_cache=0):
        # attention mask for each query contains three parts:
        # 1. memory part
        # 2. left_context + segment
        # 3. right_context_block
        # so for each segment and its correspoinding right context block,
        # the attention matrix is formed by 9 parts:
        # [0, m, 0, 0, right_context, 0, 0, seg, 0]
        # [before memory, memory, after memory, before right context, right_context,
        #  after right context, before seg, seg, after seg]
        #
        # Query is formed in the way as [right_context_blocks, utterance, summary]
        #
        # Note: put m and right_context before segment is convenient
        # for padding_mask operation.
        # Key lengths = m_length + right_context_block_length + lengths
        utterance_length, batch_size, _ = input.shape
        summary_length = math.ceil(utterance_length / self.segment_size)
        num_segs = summary_length
        rc_length = self.right_context * num_segs
        rc = self.right_context
        lc = self.left_context

        # using mini-batches, there is left context cache available for current
        # sequence.
        lcc = left_context_cache

        # max_memory_size is 0 then we don't have memory and summary
        # past_length is the memory carry from previous sequence
        if self.use_mem:
            mem_length = num_segs - 1 + past_length
        else:
            mem_length = 0
        rc_mask = []
        query_mask = []
        summary_mask = []
        for j in range(0, num_segs):
            ssize = min(self.segment_size, utterance_length - j * self.segment_size)

            rc_size = rc
            rc_mat = []
            q_mat = []
            s_mat = []
            m_start = max(j + past_length - self.max_memory_size, 0)

            # max_memory_size is 0, then we don't use memory
            if self.use_mem:
                # part 0: before memory
                rc_mat.append(input.new_zeros(rc_size, m_start))
                q_mat.append(input.new_zeros(ssize, m_start))
                s_mat.append(input.new_zeros(1, m_start))

                # part 1: memory
                col_1 = j + past_length - m_start
                rc_mat.append(torch.ones(rc_size, col_1, device=input.device))
                q_mat.append(torch.ones(ssize, col_1, device=input.device))
                # based on D22875746, disable summary query attention
                # on memeory is better for long form utterance
                s_mat.append(input.new_zeros(1, col_1))

                # part 2: after memory
                col_2 = mem_length - (j + past_length)
                rc_mat.append(input.new_zeros(rc_size, col_2))
                q_mat.append(input.new_zeros(ssize, col_2))
                s_mat.append(input.new_zeros(1, col_2))

            # part 3: before right context
            rc_start = j * rc
            rc_mat.append(input.new_zeros(rc_size, rc_start))
            q_mat.append(input.new_zeros(ssize, rc_start))
            s_mat.append(input.new_zeros(1, rc_start))

            # part 4: right context
            rc_end = rc_start + rc
            col_4 = rc
            rc_mat.append(torch.ones(rc_size, col_4, device=input.device))
            q_mat.append(torch.ones(ssize, col_4, device=input.device))
            s_mat.append(torch.ones(1, col_4, device=input.device))

            # part 5: after right context
            col_5 = rc_length - rc_end
            rc_mat.append(input.new_zeros(rc_size, col_5))
            q_mat.append(input.new_zeros(ssize, col_5))
            s_mat.append(input.new_zeros(1, col_5))

            # part 6: before query segment
            seg_start = max(j * self.segment_size + lcc - lc, 0)
            rc_mat.append(input.new_zeros(rc_size, seg_start))
            q_mat.append(input.new_zeros(ssize, seg_start))
            s_mat.append(input.new_zeros(1, seg_start))

            # part 7: query segment
            # note: right context is put in right context block
            # here we only need to consider about left context
            seg_end = min((j + 1) * self.segment_size + lcc, utterance_length + lcc)
            col_7 = seg_end - seg_start
            rc_mat.append(torch.ones(rc_size, col_7, device=input.device))
            q_mat.append(torch.ones(ssize, col_7, device=input.device))
            s_mat.append(torch.ones(1, col_7, device=input.device))

            # part 8: after query segment
            col_8 = utterance_length + lcc - seg_end
            rc_mat.append(input.new_zeros(rc_size, col_8))
            q_mat.append(input.new_zeros(ssize, col_8))
            s_mat.append(input.new_zeros(1, col_8))

            rc_mask.append(torch.cat(rc_mat, dim=1))
            query_mask.append(torch.cat(q_mat, dim=1))
            summary_mask.append(torch.cat(s_mat, dim=1))

        # no memory, then we don't need summary either
        if self.use_mem:
            attention_mask = (
                1
                - torch.cat(
                    [
                        torch.cat(rc_mask, dim=0),
                        torch.cat(query_mask, dim=0),
                        torch.cat(summary_mask, dim=0),
                    ],
                    dim=0,
                )
            ).to(torch.bool)
        else:
            attention_mask = (
                1
                - torch.cat(
                    [torch.cat(rc_mask, dim=0), torch.cat(query_mask, dim=0)], dim=0
                )
            ).to(torch.bool)

        return attention_mask

    @torch.jit.export
    def init_state(
        self, batch_size: int, device: Optional[Device] = None
    ) -> List[Tensor]:
        empty_memory = torch.zeros(
            self.num_layers,
            self.max_memory_size,
            batch_size,
            self.memory_dim,
            device=device,
        )
        left_context_key = torch.zeros(
            self.num_layers,
            self.left_context,
            batch_size,
            self.memory_dim,
            device=device,
        )
        left_context_val = torch.zeros(
            self.num_layers,
            self.left_context,
            batch_size,
            self.memory_dim,
            device=device,
        )
        past_length = torch.zeros(1, batch_size, dtype=torch.int32, device=device)

        return [empty_memory, left_context_key, left_context_val, past_length]

    @torch.jit.export
    def batch_state(self, states: List[List[Tensor]]) -> List[Tensor]:
        if len(states) == 0:
            return []
        batched_m = []
        batched_lc_key = []
        batched_lc_val = []
        batched_past_length = []
        for state in states:
            if len(state) == 0:
                continue
            m, lc_key, lc_val, past_length = state
            batched_m.append(m)
            batched_lc_key.append(lc_key)
            batched_lc_val.append(lc_val)
            batched_past_length.append(past_length)

        if (
            (len(batched_m) == 0)
            or (len(batched_lc_key) == 0)
            or (len(batched_lc_val) == 0)
            or (len(batched_past_length) == 0)
        ):
            return [
                torch.tensor([]),
                torch.tensor([]),
                torch.tensor([]),
                torch.tensor([]),
            ]

        batched_m = torch.cat(batched_m, dim=2)
        batched_lc_key = torch.cat(batched_lc_key, dim=2)
        batched_lc_val = torch.cat(batched_lc_val, dim=2)
        batched_past_length = torch.cat(batched_past_length, dim=1)
        return [batched_m, batched_lc_key, batched_lc_val, batched_past_length]

    @torch.jit.export
    def reorder_state(self, state: List[Tensor], indices: Tensor) -> List[Tensor]:
        if len(state) == 0:
            return []
        m, lc_key, lc_val, past_length = state
        indices = indices.to(device=m.device)
        reord_m = torch.index_select(m, 2, indices)
        reord_lc_key = torch.index_select(lc_key, 2, indices)
        reord_lc_val = torch.index_select(lc_val, 2, indices)
        reord_past_length = torch.index_select(past_length, 1, indices)
        return [reord_m, reord_lc_key, reord_lc_val, reord_past_length]

    @torch.jit.export
    def reset_state(self, state: List[Tensor], indices: Tensor) -> List[Tensor]:
        m, lc_key, lc_val, past_length = state
        m = m.index_fill(dim=2, index=indices, value=0.0)
        lc_key = lc_key.index_fill(dim=2, index=indices, value=0.0)
        lc_val = lc_val.index_fill(dim=2, index=indices, value=0.0)
        past_length = past_length.index_fill(dim=1, index=indices, value=0)

        return [m, lc_key, lc_val, past_length]

    @torch.jit.export
    def state_size(self) -> int:
        return 4

    @torch.jit.export
    def batch_size_in_state(
        self, state: Optional[List[Tensor]], sloppy: bool = True
    ) -> Optional[int]:
        if state is None:
            return None
        return state[0].size(2)

    def gen_summary_queries(self, input):
        sum_input = self.memory_op(input)
        return sum_input

    def _gen_right_context_padded_input(self, input):
        # This function deals with input that is already
        # padded with right context (e.g. minibatch training)
        right_context_blocks = []
        T, B, D = input.shape
        num_segs = math.ceil((T - self.right_context) / self.segment_size)
        for i in range(0, num_segs - 1):
            st = (i + 1) * self.segment_size
            ed = st + self.right_context
            assert ed < T
            temp = input[st:ed, :, :]
            right_context_blocks.append(temp)

        # last segment right context is already available
        right_context_blocks.append(input[T - self.right_context :, :, :])
        return torch.cat(right_context_blocks, dim=0)

    def _gen_segs_right_context(self, input, lengths):
        segments = []
        T, B, D = input.size()
        nT = T - self.right_context

        # assume input is right context padded
        num_segs = math.ceil(nT / self.segment_size)
        # pad zeros to the utterance to make sure each
        # segment has the same right context. For the
        for i in range(0, num_segs - 1):
            st = i * self.segment_size
            ed = min(T, st + self.segment_size + self.right_context)
            temp = input[st:ed, :, :]
            rest_lengths = torch.clamp(
                lengths - self.segment_size, min=0, max=nT - (i + 1) * self.segment_size
            )
            segments.append((temp, lengths - rest_lengths + self.right_context))
            lengths = rest_lengths

        last_seg = input[st + self.segment_size :, :, :]
        segments.append((last_seg, rest_lengths + self.right_context))

        return segments

    @torch.jit.unused
    def forward(
        self, input: Tensor, padding_masks: Tensor, state: Optional[List[Tensor]] = None
    ) -> Tuple[Tensor, Tensor, List[Tensor], List[Tensor]]:
        # Xutai: originally the second argument is lengths.
        lengths = (~padding_masks).sum(dim=1).long()
        # mini batch training.
        if self.mini_batches:
            return self.forward_mini_batches(input, lengths, state)

        # regular full sequence training. Note, assume the right context in provided
        # in the input.
        T, B, D = input.size()
        right_context_blocks = self._gen_right_context_padded_input(input)

        # generate the relative positional embedding
        if self.use_rpe:
            rpe = self._get_relative_position(
                input=input,
                max_relative_position=self.max_relative_position,
                left_context_length=0,
                past_length=0,
                is_decoding=False,
            )
        else:
            rpe = None
        input = input[: T - self.right_context, :, :]

        attention_mask = self._get_attention_mask(input)

        # firt layer use each segment mean as memory
        # ignore the last one seg average
        if self.use_mem:
            mems = self.gen_summary_queries(input)[:-1, :, :]
        else:
            mems = torch.zeros(0, input.size(1), input.size(2), device=input.device)
            mems = mems.type_as(input)

        output = input
        all_outputs = []

        for layer in self.layers:
            output, mems, right_context_blocks, _, _ = layer(
                input=output,
                lengths=lengths,
                attention_mask=attention_mask,
                mems=mems,
                right_context_blocks=right_context_blocks,
                pre_mems=None,
                left_context_key=None,
                left_context_val=None,
                rpe=rpe,
            )
            all_outputs.append(output)
        return output, padding_masks, [], all_outputs

    def forward_jit_mini_batch_init(
        self,
        seg: Tensor,
        state: Optional[List[Tensor]] = None,
        is_decoding: bool = False,
    ):
        # Prepare state. In whole sequence training, state is ignored.
        # For minibatch training, we need to prepare state
        if state is None:
            state = self.init_state(batch_size=seg.size(1), device=seg.device)
            if seg.dtype == torch.half:
                state = [state[0].half(), state[1].half(), state[2].half(), state[3]]

        if self.use_mem:
            # note input average only on seg, not on right context
            # first layer use each segmetn mean as memory. the last
            # one segment average is used in state
            full_mems = self.gen_summary_queries(seg)
            if is_decoding:
                mems = full_mems[0:1, :, :]
                state_mems = torch.cat([state[0][0], mems], dim=0)
            else:
                mems = full_mems[:-1, :, :]
                state_mems = torch.cat([state[0][0], full_mems], dim=0)
        else:
            mems = state[0][0]
            state_mems = mems

        # track processed segment number or memory number
        # the same batch as the same bumber of past length
        past_length = state[3][0][0].item()
        past_left_context = min(past_length * self.segment_size, self.left_context)
        past_length = min(self.max_memory_size, past_length)

        return state, mems, state_mems, past_length, past_left_context

    def state_update_before(
        self, layer: int, state: List[Tensor], past_length: int, past_left_context: int
    ):
        pre_mems = state[0][layer][self.max_memory_size - past_length :, :, :]
        lc_key = state[1][layer][self.left_context - past_left_context :, :, :]
        lc_val = state[2][layer][self.left_context - past_left_context :, :, :]
        return pre_mems, lc_key, lc_val

    def state_update_after(
        self,
        layer: int,
        state: List[Tensor],
        mems: Tensor,
        next_key: Tensor,
        next_val: Tensor,
        mems_list: List[Tensor],
        lc_key_list: List[Tensor],
        lc_val_list: List[Tensor],
    ):
        # mems is used for next layer
        if layer < self.num_layers - 1:
            state_mems = torch.cat([state[0][layer + 1], mems], dim=0)
            mems_list.append(state_mems[-self.max_memory_size :, :, :])

        # when mems pass to next sequence, we need the last memory. when mems
        # use for the next layer, we can ignore the last memory
        mems = mems[:-1, :, :]

        # note state[1][i] and state[2][i] original length equals to self.left_context
        new_k = torch.cat([state[1][layer], next_key], dim=0)
        new_v = torch.cat([state[2][layer], next_val], dim=0)
        lc_key_list.append(new_k[-self.left_context :, :, :])
        lc_val_list.append(new_v[-self.left_context :, :, :])
        return mems_list, lc_key_list, lc_val_list, mems

    def state_update_after_loop(
        self,
        state: List[Tensor],
        mems_list: List[Tensor],
        lc_key_list: List[Tensor],
        lc_val_list: List[Tensor],
        update_length: int,
    ):
        state[0] = torch.stack(mems_list, dim=0)
        state[1] = torch.stack(lc_key_list, dim=0)
        state[2] = torch.stack(lc_val_list, dim=0)
        state[3] = state[3] + update_length
        return state

    @torch.jit.unused
    def forward_mini_batches(
        self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None
    ) -> Tuple[Tensor, Tensor, List[Tensor], List[Tensor]]:
        T, B, D = input.size()

        # input without right context
        seg = input[: T - self.right_context, :, :]

        # get right context blocks
        right_context_blocks = self._gen_right_context_padded_input(input)

        mems_list = []
        lc_key_list = []
        lc_val_list = []
        results = self.forward_jit_mini_batch_init(seg, state, False)
        state, mems, state_mems, past_length, past_left_context = results

        # relative position embedding
        if self.use_rpe:
            rpe = self._get_relative_position(
                input=input,
                max_relative_position=self.max_relative_position,
                left_context_length=past_left_context,
                past_length=past_length,
                is_decoding=False,
            )
        else:
            rpe = None

        # get attention mask based on seg (not include right context) and available
        # left context
        attention_mask = self._get_attention_mask(seg, past_length, past_left_context)
        mems_list.append(state_mems[-self.max_memory_size :, :, :])
        output = seg
        i = 0
        all_outputs = []
        for layer in self.layers:
            # In order to make cross stream batching work, mem, left context key
            # and left context value in the state should always be the same shape.
            # We use the past length to track the processed segment number. In this
            # way, we take out the essential memory, left context key and left
            # context val from the state. After finish the forward for current segment
            # we add the new memory, left context key and left context value into the
            # staate and trim out the oldest part to keep the shape consistent.
            pre_mems, lc_key, lc_val = self.state_update_before(
                i, state, past_length, past_left_context
            )

            output, mems, right_context_blocks, next_key, next_val = layer.forward(
                input=output,
                lengths=lengths,
                attention_mask=attention_mask,
                mems=mems,
                right_context_blocks=right_context_blocks,
                pre_mems=pre_mems,
                left_context_key=lc_key,
                left_context_val=lc_val,
                rpe=rpe,
            )
            all_outputs.append(output)
            mems_list, lc_key_list, lc_val_list, mems = self.state_update_after(
                layer=i,
                state=state,
                mems=mems,
                next_key=next_key,
                next_val=next_val,
                mems_list=mems_list,
                lc_key_list=lc_key_list,
                lc_val_list=lc_val_list,
            )

            i += 1

        # update state
        update_length = math.ceil((T - self.right_context) / self.segment_size)
        state = self.state_update_after_loop(
            state=state,
            mems_list=mems_list,
            lc_key_list=lc_key_list,
            lc_val_list=lc_val_list,
            update_length=update_length,
        )

        return output, lengths, state, all_outputs

    def forward_jit_test(
        self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None
    ) -> Tuple[Tensor, Tensor, List[Tensor]]:
        """
        This one simulate sequence encoder forward jit. This is for unit test purpose.
        It is not used in training or decoding. Note, extra_right_context is set in
        the model. In unit test, input = [utterance, right_context], lengths =
        [utterance_length].
        args:
            input: input utterance
            lengths: utterance input length
            state: None here. input is whole utterance
        """
        # [TODO] sequence_to_segment has bug in lengths.
        seg_src_tokens_lengths = self._gen_segs_right_context(input, lengths)

        seg_enc_tokens_lengths: List[Tuple[Tensor, Tensor]] = []
        state: Optional[List[Tensor]] = None
        for seg_src_tokens, seg_src_lengths in seg_src_tokens_lengths:
            seg_enc_tokens, seg_enc_lengths, state = self.forward_jit(
                input=seg_src_tokens, lengths=seg_src_lengths, state=state
            )
            seg_enc_tokens_lengths.append((seg_enc_tokens, seg_enc_lengths))

        enc_tokens, enc_lengths = segments_to_sequence(
            segments=seg_enc_tokens_lengths, time_axis=0
        )

        state = []  # returns trivial state

        return enc_tokens, enc_lengths, state

    @torch.jit.export
    def forward_jit(
        self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None
    ) -> Tuple[Tensor, Tensor, List[Tensor]]:
        """
        Forward helper for online decoding.

        args:
            input: [seg, right_context]. We assume in online we
                always padding the right context to the preset right context size.
                For the last segment, we may have short segment size, but right
                context size is the same as other segments
            lengths: utterance input length is the utterance segment length and
                     right context size
            state: [memory, left_context_key, left_context_val]. To improve throughput,
                in addition to memory, we also cache key and value for left_context in
                multihead self-attention
        """
        # In online decoding, input = [segment, right_context]
        # Lengths = [segment_length, right_context_length]
        # so we need strip right context in output
        T, B, D = input.size()
        rc_str = T - self.right_context
        rc_end = T
        right_context_blocks = input[rc_str:rc_end, :, :]
        seg = input[:rc_str, :, :]
        lengths = torch.clamp(lengths - self.right_context, min=0)
        mems_list = []
        lc_key_list = []
        lc_val_list = []

        results = self.forward_jit_mini_batch_init(seg, state, True)
        state, mems, state_mems, past_length, past_left_context = results

        # relative position embedding
        if self.use_rpe:
            rpe = self._get_relative_position(
                input=input,
                max_relative_position=self.max_relative_position,
                left_context_length=past_left_context,
                past_length=past_length,
                is_decoding=True,
            )
        else:
            rpe = None

        # memory for first layer.
        mems_list.append(state_mems[-self.max_memory_size :, :, :])
        output = seg
        i = 0
        for layer in self.layers:
            # In order to make cross stream batching work, mem, left context key
            # and left context value in the state should always be the same shape.
            # We use the past length to track the processed segment number. In this
            # way, we take out the essential memory, left context key and left
            # context val from the state. After finish the forward for current segment
            # we add the new memory, left context key and left context value into the
            # staate and trim out the oldest part to keep the shape consistent.
            true_mems, lc_key, lc_val = self.state_update_before(
                layer=i,
                state=state,
                past_length=past_length,
                past_left_context=past_left_context,
            )

            output, mems, right_context_blocks, next_key, next_val = layer.forward_jit(
                input=output,
                lengths=lengths,
                mems=true_mems,
                right_context_blocks=right_context_blocks,
                left_context_key=lc_key,
                left_context_val=lc_val,
                rpe=rpe,
            )
            # mems is used for next layer
            mems_list, lc_key_list, lc_val_list, _ = self.state_update_after(
                layer=i,
                state=state,
                mems_list=mems_list,
                mems=mems,
                next_key=next_key,
                next_val=next_val,
                lc_key_list=lc_key_list,
                lc_val_list=lc_val_list,
            )
            i += 1

        # update state
        state = self.state_update_after_loop(
            state=state,
            mems_list=mems_list,
            lc_key_list=lc_key_list,
            lc_val_list=lc_val_list,
            update_length=1,
        )

        return output, lengths, state

    def quantize_(self, params=None):
        if params and "per_channel" in params and params["per_channel"]:
            qconfig = per_channel_dynamic_qconfig
        else:
            qconfig = default_dynamic_qconfig
        torch.quantization.quantize_dynamic(
            self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True
        )
        return self


# ------------------------------------------------------------------------------
#   Emformer encoder for seq2seq model
#   This is a wrapper over the original emformer
# ------------------------------------------------------------------------------
def emformer_encoder(klass):
    class SpeechEncoder(klass):
        def __init__(self, args):
            super().__init__(args)
            stride = SpeechEncoder.conv_layer_stride(args)
            trf_left_context = args.segment_left_context // stride
            trf_right_context = args.segment_right_context // stride
            context_config = [trf_left_context, trf_right_context]
            self.transformer_layers = nn.ModuleList(
                [
                    NoSegAugmentedMemoryTransformerEncoderLayer(
                        input_dim=args.encoder_embed_dim,
                        num_heads=args.encoder_attention_heads,
                        ffn_dim=args.encoder_ffn_embed_dim,
                        num_layers=args.encoder_layers,
                        dropout_in_attn=args.dropout,
                        dropout_on_attn=args.dropout,
                        dropout_on_fc1=args.dropout,
                        dropout_on_fc2=args.dropout,
                        activation_fn=args.activation_fn,
                        context_config=context_config,
                        segment_size=args.segment_length,
                        max_memory_size=args.max_memory_size,
                        scaled_init=True,  # TODO: use constant for now.
                        tanh_on_mem=args.amtrf_tanh_on_mem,
                    )
                ]
            )

        def forward(self, src_tokens, src_lengths):
            encoder_out = super().forward(src_tokens, src_lengths)
            output = encoder_out["encoder_out"][0]
            encoder_padding_masks = encoder_out["encoder_padding_mask"][0]

            # This is because that in the original implementation
            # the output didn't consider the last segment as right context.
            encoder_padding_masks = encoder_padding_masks[:, : output.size(0)]

            return {
                "encoder_out": [output],
                "encoder_padding_mask": [encoder_padding_masks],
                "encoder_embedding": [],
                "encoder_states": [],
                "src_tokens": [],
                "src_lengths": [],
            }

        @staticmethod
        def conv_layer_stride(args):
            # TODO: make it configurable from the args
            return 4

    SpeechEncoder.__name__ = klass.__name__
    return SpeechEncoder