File size: 18,565 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
#!/usr/bin/env python3

import logging
import math
from typing import Dict, List, Optional, Tuple
from pathlib import Path

import torch
import torch.nn as nn
from fairseq import checkpoint_utils, utils
from fairseq.data.data_utils import lengths_to_padding_mask
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    register_model,
    register_model_architecture,
)
from fairseq.models.transformer import Embedding, TransformerDecoder
from fairseq.modules import (
    FairseqDropout,
    LayerNorm,
    PositionalEmbedding,
    TransformerEncoderLayer,
)
from torch import Tensor


logger = logging.getLogger(__name__)


class Conv1dSubsampler(nn.Module):
    """Convolutional subsampler: a stack of 1D convolution (along temporal
    dimension) followed by non-linear activation via gated linear units
    (https://arxiv.org/abs/1911.08460)

    Args:
        in_channels (int): the number of input channels
        mid_channels (int): the number of intermediate channels
        out_channels (int): the number of output channels
        kernel_sizes (List[int]): the kernel size for each convolutional layer
    """

    def __init__(
        self,
        in_channels: int,
        mid_channels: int,
        out_channels: int,
        kernel_sizes: List[int] = (3, 3),
    ):
        super(Conv1dSubsampler, self).__init__()
        self.n_layers = len(kernel_sizes)
        self.conv_layers = nn.ModuleList(
            nn.Conv1d(
                in_channels if i == 0 else mid_channels // 2,
                mid_channels if i < self.n_layers - 1 else out_channels * 2,
                k,
                stride=2,
                padding=k // 2,
            )
            for i, k in enumerate(kernel_sizes)
        )

    def get_out_seq_lens_tensor(self, in_seq_lens_tensor):
        out = in_seq_lens_tensor.clone()
        for _ in range(self.n_layers):
            out = ((out.float() - 1) / 2 + 1).floor().long()
        return out

    def forward(self, src_tokens, src_lengths):
        bsz, in_seq_len, _ = src_tokens.size()  # B x T x (C x D)
        x = src_tokens.transpose(1, 2).contiguous()  # -> B x (C x D) x T
        for conv in self.conv_layers:
            x = conv(x)
            x = nn.functional.glu(x, dim=1)
        _, _, out_seq_len = x.size()
        x = x.transpose(1, 2).transpose(0, 1).contiguous()  # -> T x B x (C x D)
        return x, self.get_out_seq_lens_tensor(src_lengths)


@register_model("s2t_transformer")
class S2TTransformerModel(FairseqEncoderDecoderModel):
    """Adapted Transformer model (https://arxiv.org/abs/1706.03762) for
    speech-to-text tasks. The Transformer encoder/decoder remains the same.
    A trainable input subsampler is prepended to the Transformer encoder to
    project inputs into the encoder dimension as well as downsample input
    sequence for computational efficiency."""

    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # input
        parser.add_argument(
            "--conv-kernel-sizes",
            type=str,
            metavar="N",
            help="kernel sizes of Conv1d subsampling layers",
        )
        parser.add_argument(
            "--conv-channels",
            type=int,
            metavar="N",
            help="# of channels in Conv1d subsampling layers",
        )
        # Transformer
        parser.add_argument(
            "--activation-fn",
            type=str,
            default="relu",
            choices=utils.get_available_activation_fns(),
            help="activation function to use",
        )
        parser.add_argument(
            "--dropout", type=float, metavar="D", help="dropout probability"
        )
        parser.add_argument(
            "--attention-dropout",
            type=float,
            metavar="D",
            help="dropout probability for attention weights",
        )
        parser.add_argument(
            "--activation-dropout",
            "--relu-dropout",
            type=float,
            metavar="D",
            help="dropout probability after activation in FFN.",
        )
        parser.add_argument(
            "--encoder-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension",
        )
        parser.add_argument(
            "--encoder-ffn-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--encoder-layers", type=int, metavar="N", help="num encoder layers"
        )
        parser.add_argument(
            "--encoder-attention-heads",
            type=int,
            metavar="N",
            help="num encoder attention heads",
        )
        parser.add_argument(
            "--encoder-normalize-before",
            action="store_true",
            help="apply layernorm before each encoder block",
        )
        parser.add_argument(
            "--decoder-embed-dim",
            type=int,
            metavar="N",
            help="decoder embedding dimension",
        )
        parser.add_argument(
            "--decoder-ffn-embed-dim",
            type=int,
            metavar="N",
            help="decoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--decoder-layers", type=int, metavar="N", help="num decoder layers"
        )
        parser.add_argument(
            "--decoder-attention-heads",
            type=int,
            metavar="N",
            help="num decoder attention heads",
        )
        parser.add_argument(
            "--decoder-normalize-before",
            action="store_true",
            help="apply layernorm before each decoder block",
        )
        parser.add_argument(
            "--share-decoder-input-output-embed",
            action="store_true",
            help="share decoder input and output embeddings",
        )
        parser.add_argument(
            "--layernorm-embedding",
            action="store_true",
            help="add layernorm to embedding",
        )
        parser.add_argument(
            "--no-scale-embedding",
            action="store_true",
            help="if True, dont scale embeddings",
        )
        parser.add_argument(
            "--load-pretrained-encoder-from",
            type=str,
            metavar="STR",
            help="model to take encoder weights from (for initialization)",
        )
        parser.add_argument(
            '--encoder-freezing-updates',
            type=int,
            metavar='N',
            help='freeze encoder for first N updates'
        )

    @classmethod
    def build_encoder(cls, args):
        encoder = S2TTransformerEncoder(args)
        pretraining_path = getattr(args, "load_pretrained_encoder_from", None)
        if pretraining_path is not None:
            if not Path(pretraining_path).exists():
                logger.warning(
                    f"skipped pretraining because {pretraining_path} does not exist"
                )
            else:
                encoder = checkpoint_utils.load_pretrained_component_from_model(
                    component=encoder, checkpoint=pretraining_path
                )
                logger.info(f"loaded pretrained encoder from: {pretraining_path}")
        return encoder

    @classmethod
    def build_decoder(cls, args, task, embed_tokens):
        return TransformerDecoderScriptable(args, task.target_dictionary, embed_tokens)

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        def build_embedding(dictionary, embed_dim):
            num_embeddings = len(dictionary)
            padding_idx = dictionary.pad()
            return Embedding(num_embeddings, embed_dim, padding_idx)

        decoder_embed_tokens = build_embedding(
            task.target_dictionary, args.decoder_embed_dim
        )
        encoder = cls.build_encoder(args)
        decoder = cls.build_decoder(args, task, decoder_embed_tokens)
        return cls(encoder, decoder)

    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        # net_output['encoder_out'] is a (B, T, D) tensor
        lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
        lprobs.batch_first = True
        return lprobs

    def forward(self, src_tokens, src_lengths, prev_output_tokens):
        """
        The forward method inherited from the base class has a **kwargs
        argument in its input, which is not supported in torchscript. This
        method overwrites the forward method definition without **kwargs.
        """
        encoder_out = self.encoder(src_tokens=src_tokens, src_lengths=src_lengths)
        decoder_out = self.decoder(
            prev_output_tokens=prev_output_tokens, encoder_out=encoder_out
        )
        return decoder_out


class S2TTransformerEncoder(FairseqEncoder):
    """Speech-to-text Transformer encoder that consists of input subsampler and
    Transformer encoder."""

    def __init__(self, args):
        super().__init__(None)

        self.encoder_freezing_updates = args.encoder_freezing_updates
        self.num_updates = 0

        self.dropout_module = FairseqDropout(
            p=args.dropout, module_name=self.__class__.__name__
        )
        self.embed_scale = math.sqrt(args.encoder_embed_dim)
        if args.no_scale_embedding:
            self.embed_scale = 1.0
        self.padding_idx = 1

        self.subsample = Conv1dSubsampler(
            args.input_feat_per_channel * args.input_channels,
            args.conv_channels,
            args.encoder_embed_dim,
            [int(k) for k in args.conv_kernel_sizes.split(",")],
        )

        self.embed_positions = PositionalEmbedding(
            args.max_source_positions, args.encoder_embed_dim, self.padding_idx
        )

        self.transformer_layers = nn.ModuleList(
            [TransformerEncoderLayer(args) for _ in range(args.encoder_layers)]
        )
        if args.encoder_normalize_before:
            self.layer_norm = LayerNorm(args.encoder_embed_dim)
        else:
            self.layer_norm = None

    def _forward(self, src_tokens, src_lengths):
        x, input_lengths = self.subsample(src_tokens, src_lengths)
        x = self.embed_scale * x

        encoder_padding_mask = lengths_to_padding_mask(input_lengths)
        positions = self.embed_positions(encoder_padding_mask).transpose(0, 1)
        x += positions
        x = self.dropout_module(x)

        for layer in self.transformer_layers:
            x = layer(x, encoder_padding_mask)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        return {
            "encoder_out": [x],  # T x B x C
            "encoder_padding_mask": [encoder_padding_mask] if encoder_padding_mask.any() else [],  # B x T
            "encoder_embedding": [],  # B x T x C
            "encoder_states": [],  # List[T x B x C]
            "src_tokens": [],
            "src_lengths": [],
        }

    def forward(self, src_tokens, src_lengths):
        if self.num_updates < self.encoder_freezing_updates:
            with torch.no_grad():
                x = self._forward(src_tokens, src_lengths)
        else:
            x = self._forward(src_tokens, src_lengths)
        return x

    def reorder_encoder_out(self, encoder_out, new_order):
        new_encoder_out = (
            [] if len(encoder_out["encoder_out"]) == 0
            else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
        )

        new_encoder_padding_mask = (
            [] if len(encoder_out["encoder_padding_mask"]) == 0
            else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
        )

        new_encoder_embedding = (
            [] if len(encoder_out["encoder_embedding"]) == 0
            else [x.index_select(0, new_order) for x in encoder_out["encoder_embedding"]]
        )

        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,  # T x B x C
            "encoder_padding_mask": new_encoder_padding_mask,  # B x T
            "encoder_embedding": new_encoder_embedding,  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": [],  # B x T
            "src_lengths": [],  # B x 1
        }

    def set_num_updates(self, num_updates):
        super().set_num_updates(num_updates)
        self.num_updates = num_updates


class TransformerDecoderScriptable(TransformerDecoder):
    def extract_features(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        # call scriptable method from parent class
        x, _ = self.extract_features_scriptable(
            prev_output_tokens,
            encoder_out,
            incremental_state,
            full_context_alignment,
            alignment_layer,
            alignment_heads,
        )
        return x, None


@register_model_architecture(model_name="s2t_transformer", arch_name="s2t_transformer")
def base_architecture(args):
    args.encoder_freezing_updates = getattr(args, "encoder_freezing_updates", 0)
    # Convolutional subsampler
    args.conv_kernel_sizes = getattr(args, "conv_kernel_sizes", "5,5")
    args.conv_channels = getattr(args, "conv_channels", 1024)
    # Transformer
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 12)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", args.dropout)
    args.activation_dropout = getattr(args, "activation_dropout", args.dropout)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0)
    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)


@register_model_architecture("s2t_transformer", "s2t_transformer_s")
def s2t_transformer_s(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 8)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
    args.dropout = getattr(args, "dropout", 0.1)
    base_architecture(args)


@register_model_architecture("s2t_transformer", "s2t_transformer_xs")
def s2t_transformer_xs(args):
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.decoder_layers = getattr(args, "decoder_layers", 3)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 4)
    args.dropout = getattr(args, "dropout", 0.3)
    s2t_transformer_s(args)


@register_model_architecture("s2t_transformer", "s2t_transformer_sp")
def s2t_transformer_sp(args):
    args.encoder_layers = getattr(args, "encoder_layers", 16)
    s2t_transformer_s(args)


@register_model_architecture("s2t_transformer", "s2t_transformer_m")
def s2t_transformer_m(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 512 * 4)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.dropout = getattr(args, "dropout", 0.15)
    base_architecture(args)


@register_model_architecture("s2t_transformer", "s2t_transformer_mp")
def s2t_transformer_mp(args):
    args.encoder_layers = getattr(args, "encoder_layers", 16)
    s2t_transformer_m(args)


@register_model_architecture("s2t_transformer", "s2t_transformer_l")
def s2t_transformer_l(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024 * 4)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
    args.dropout = getattr(args, "dropout", 0.2)
    base_architecture(args)


@register_model_architecture("s2t_transformer", "s2t_transformer_lp")
def s2t_transformer_lp(args):
    args.encoder_layers = getattr(args, "encoder_layers", 16)
    s2t_transformer_l(args)