File size: 7,717 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This file is to re-implemented the low-rank and beam approximation of CRF layer
Proposed by:
Sun, Zhiqing, et al.
Fast Structured Decoding for Sequence Models
https://arxiv.org/abs/1910.11555
The CRF implementation is mainly borrowed from
https://github.com/kmkurn/pytorch-crf/blob/master/torchcrf/__init__.py
"""
import numpy as np
import torch
import torch.nn as nn
def logsumexp(x, dim=1):
return torch.logsumexp(x.float(), dim=dim).type_as(x)
class DynamicCRF(nn.Module):
"""Dynamic CRF layer is used to approximate the traditional
Conditional Random Fields (CRF)
$P(y | x) = 1/Z(x) exp(sum_i s(y_i, x) + sum_i t(y_{i-1}, y_i, x))$
where in this function, we assume the emition scores (s) are given,
and the transition score is a |V| x |V| matrix $M$
in the following two aspects:
(1) it used a low-rank approximation for the transition matrix:
$M = E_1 E_2^T$
(2) it used a beam to estimate the normalizing factor Z(x)
"""
def __init__(self, num_embedding, low_rank=32, beam_size=64):
super().__init__()
self.E1 = nn.Embedding(num_embedding, low_rank)
self.E2 = nn.Embedding(num_embedding, low_rank)
self.vocb = num_embedding
self.rank = low_rank
self.beam = beam_size
def extra_repr(self):
return "vocab_size={}, low_rank={}, beam_size={}".format(
self.vocb, self.rank, self.beam
)
def forward(self, emissions, targets, masks, beam=None):
"""
Compute the conditional log-likelihood of a sequence of target tokens given emission scores
Args:
emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output
``(batch_size, seq_len, vocab_size)``. We assume batch-first
targets (`~torch.LongTensor`): Sequence of target token indices
``(batch_size, seq_len)
masks (`~torch.ByteTensor`): Mask tensor with the same size as targets
Returns:
`~torch.Tensor`: approximated log-likelihood
"""
numerator = self._compute_score(emissions, targets, masks)
denominator = self._compute_normalizer(emissions, targets, masks, beam)
return numerator - denominator
def forward_decoder(self, emissions, masks=None, beam=None):
"""
Find the most likely output sequence using Viterbi algorithm.
Args:
emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output
``(batch_size, seq_len, vocab_size)``. We assume batch-first
masks (`~torch.ByteTensor`): Mask tensor with the same size as targets
Returns:
`~torch.LongTensor`: decoded sequence from the CRF model
"""
return self._viterbi_decode(emissions, masks, beam)
def _compute_score(self, emissions, targets, masks=None):
batch_size, seq_len = targets.size()
emission_scores = emissions.gather(2, targets[:, :, None])[:, :, 0] # B x T
transition_scores = (self.E1(targets[:, :-1]) * self.E2(targets[:, 1:])).sum(2)
scores = emission_scores
scores[:, 1:] += transition_scores
if masks is not None:
scores = scores * masks.type_as(scores)
return scores.sum(-1)
def _compute_normalizer(self, emissions, targets=None, masks=None, beam=None):
# HACK: we include "target" which is a hueristic for training
# HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?)
beam = beam if beam is not None else self.beam
batch_size, seq_len = emissions.size()[:2]
if targets is not None:
_emissions = emissions.scatter(2, targets[:, :, None], np.float("inf"))
beam_targets = _emissions.topk(beam, 2)[1]
beam_emission_scores = emissions.gather(2, beam_targets)
else:
beam_emission_scores, beam_targets = emissions.topk(beam, 2)
beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D
beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D
beam_transition_matrix = torch.bmm(
beam_transition_score1.view(-1, beam, self.rank),
beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2),
)
beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam)
# compute the normalizer in the log-space
score = beam_emission_scores[:, 0] # B x K
for i in range(1, seq_len):
next_score = score[:, :, None] + beam_transition_matrix[:, i - 1]
next_score = logsumexp(next_score, dim=1) + beam_emission_scores[:, i]
if masks is not None:
score = torch.where(masks[:, i : i + 1], next_score, score)
else:
score = next_score
# Sum (log-sum-exp) over all possible tags
return logsumexp(score, dim=1)
def _viterbi_decode(self, emissions, masks=None, beam=None):
# HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?)
beam = beam if beam is not None else self.beam
batch_size, seq_len = emissions.size()[:2]
beam_emission_scores, beam_targets = emissions.topk(beam, 2)
beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D
beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D
beam_transition_matrix = torch.bmm(
beam_transition_score1.view(-1, beam, self.rank),
beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2),
)
beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam)
traj_tokens, traj_scores = [], []
finalized_tokens, finalized_scores = [], []
# compute the normalizer in the log-space
score = beam_emission_scores[:, 0] # B x K
dummy = (
torch.arange(beam, device=score.device).expand(*score.size()).contiguous()
)
for i in range(1, seq_len):
traj_scores.append(score)
_score = score[:, :, None] + beam_transition_matrix[:, i - 1]
_score, _index = _score.max(dim=1)
_score = _score + beam_emission_scores[:, i]
if masks is not None:
score = torch.where(masks[:, i : i + 1], _score, score)
index = torch.where(masks[:, i : i + 1], _index, dummy)
else:
score, index = _score, _index
traj_tokens.append(index)
# now running the back-tracing and find the best
best_score, best_index = score.max(dim=1)
finalized_tokens.append(best_index[:, None])
finalized_scores.append(best_score[:, None])
for idx, scs in zip(reversed(traj_tokens), reversed(traj_scores)):
previous_index = finalized_tokens[-1]
finalized_tokens.append(idx.gather(1, previous_index))
finalized_scores.append(scs.gather(1, previous_index))
finalized_tokens.reverse()
finalized_tokens = torch.cat(finalized_tokens, 1)
finalized_tokens = beam_targets.gather(2, finalized_tokens[:, :, None])[:, :, 0]
finalized_scores.reverse()
finalized_scores = torch.cat(finalized_scores, 1)
finalized_scores[:, 1:] = finalized_scores[:, 1:] - finalized_scores[:, :-1]
return finalized_scores, finalized_tokens
|