File size: 8,922 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import dynamicconv_cuda
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.unfold import unfold1d
from torch import nn
from torch.autograd import Function


class dynamicconvFunction(Function):
    @staticmethod
    def forward(ctx, x, weights, padding_l):
        ctx.padding_l = padding_l
        outputs = dynamicconv_cuda.forward(x, weights, padding_l)
        variables = [x, weights]
        ctx.save_for_backward(*variables)
        return outputs[0]

    @staticmethod
    def backward(ctx, grad_output):
        outputs = dynamicconv_cuda.backward(
            grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors
        )
        grad_input, grad_weights = outputs
        return grad_input, grad_weights, None


@with_incremental_state
class DynamicconvLayer(nn.Module):
    def __init__(
        self,
        input_size,
        kernel_size=1,
        padding_l=None,
        weight_softmax=False,
        num_heads=1,
        weight_dropout=0.0,
        bias=False,
        renorm_padding=False,
        conv_bias=False,
        query_size=None,
    ):

        super(DynamicconvLayer, self).__init__()
        self.input_size = input_size
        self.query_size = input_size if query_size is None else query_size
        self.kernel_size = kernel_size
        self.padding_l = padding_l
        self.num_heads = num_heads
        self.weight_softmax = weight_softmax
        self.weight_dropout_module = FairseqDropout(
            weight_dropout, module_name=self.__class__.__name__
        )
        self.renorm_padding = renorm_padding
        self.bias = bias

        self.weight_linear = nn.Linear(input_size, num_heads * kernel_size, bias)
        if conv_bias:
            self.conv_bias = nn.Parameter(torch.Tensor(input_size))
        else:
            self.conv_bias = None
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.weight_linear.weight)
        if self.conv_bias is not None:
            nn.init.constant_(self.conv_bias, 0.0)
            nn.init.constant_(self.weight_linaer.bias, 0.0)

    def forward(self, x, incremental_state=None, query=None, unfold=None):

        T, B, C = x.size()
        K, H = self.kernel_size, self.num_heads
        # R = C // H

        # during inference time, incremental BMM is faster
        if incremental_state is not None:
            unfold = (
                x.size(0) > 512 if unfold is None else unfold
            )  # use unfold mode as default for long sequence to save memory
            unfold = unfold or (incremental_state is not None)
            assert query is None

            if query is None:
                query = x
            if unfold:
                output = self._forward_unfolded(x, incremental_state, query)
            else:
                output = self._forward_expanded(x, incremental_state, query)

            if self.conv_bias is not None:
                output = output + self.conv_bias.view(1, 1, -1)

            return output

        # during training time, use CUDA kernel
        else:
            weight = self.weight_linear(x).view(T, B, H, K)
            if self.weight_softmax:
                weight = F.softmax(weight, dim=-1)
            if self.weight_dropout_module.p:
                weight = self.weight_dropout_module(weight)

            weight = weight.permute(1, 2, 3, 0).contiguous()
            self.filters = weight
            x = x.permute(1, 2, 0).contiguous()
            output = dynamicconvFunction.apply(x, weight, self.padding_l).permute(
                2, 0, 1
            )
            if self.conv_bias is not None:
                output = output + self.conv_bias.view(1, 1, -1)
            return output

    def reorder_incremental_state(self, incremental_state, new_order):
        input_buffer = self._get_input_buffer(incremental_state)
        if input_buffer is not None:
            input_buffer = input_buffer.index_select(1, new_order)
            self._set_input_buffer(incremental_state, input_buffer)

    def _get_input_buffer(self, incremental_state):
        return utils.get_incremental_state(self, incremental_state, "input_buffer")

    def _set_input_buffer(self, incremental_state, new_buffer):
        return utils.set_incremental_state(
            self, incremental_state, "input_buffer", new_buffer
        )

    def _forward_unfolded(self, x, incremental_state, query):
        """The conventional implementation of convolutions.
        Unfolding the input by having a window shifting to the right."""
        T, B, C = x.size()
        K, H = self.kernel_size, self.num_heads
        R = C // H
        assert R * H == C == self.input_size

        weight = self.weight_linear(query).view(T * B * H, -1)

        # renorm_padding is only implemented in _forward_expanded
        assert not self.renorm_padding or incremental_state is not None

        if incremental_state is not None:
            input_buffer = self._get_input_buffer(incremental_state)
            if input_buffer is None:
                input_buffer = x.new()
            x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3)
            if self.kernel_size > 1:
                self._set_input_buffer(
                    incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :]
                )
            x_unfold = x_unfold.view(T * B * H, R, -1)
        else:
            padding_l = self.padding_l
            if K > T and padding_l == K - 1:
                weight = weight.narrow(1, K - T, T)
                K, padding_l = T, T - 1
            # unfold the input: T x B x C --> T' x B x C x K
            x_unfold = unfold1d(x, K, padding_l, 0)
            x_unfold = x_unfold.view(T * B * H, R, K)

        if self.weight_softmax and not self.renorm_padding:
            weight = F.softmax(weight, dim=1)
        weight = weight.narrow(1, 0, K)

        if incremental_state is not None:
            weight = weight[:, -x_unfold.size(2) :]
            K = weight.size(1)

        if self.weight_softmax and self.renorm_padding:
            weight = F.softmax(weight, dim=1)

        weight = self.weight_dropout_module(weight, inplace=False)

        output = torch.bmm(x_unfold, weight.unsqueeze(2))  # T*B*H x R x 1
        output = output.view(T, B, C)
        return output

    def _forward_expanded(self, x, incremental_stat, query):
        """Turn the convolution filters into band matrices and do matrix multiplication.
        This is faster when the sequence is short, but less memory efficient.
        This is not used in the decoder during inference.
        """
        T, B, C = x.size()
        K, H = self.kernel_size, self.num_heads
        R = C // H
        assert R * H == C == self.input_size
        weight = self.weight_linear(query).view(T * B * H, -1)

        if not self.renorm_padding:
            if self.weight_softmax:
                weight = F.softmax(weight, dim=1)
            weight = self.weight_dropout_module(weight, inplace=False)
        weight = weight.narrow(1, 0, K).contiguous()
        weight = weight.view(T, B * H, K).transpose(0, 1)

        x = x.view(T, B * H, R).transpose(0, 1)
        if self.weight_softmax and self.renorm_padding:
            # turn the convolution filters into band matrices
            weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf"))
            weight_expanded.as_strided(
                (B * H, T, K), (T * (T + K - 1), T + K, 1)
            ).copy_(weight)
            weight_expanded = weight_expanded.narrow(2, self.padding_l, T)
            # normalize the weight over valid positions like self-attention
            weight_expanded = F.softmax(weight_expanded, dim=2)
            weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False)
        else:
            P = self.padding_l
            # For efficiency, we cut the kernel size and reduce the padding when the kernel is larger than the length
            if K > T and P == K - 1:
                weight = weight.narrow(2, K - T, T)
                K, P = T, T - 1
            # turn the convolution filters into band matrices
            weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False)
            weight_expanded.as_strided(
                (B * H, T, K), (T * (T + K - 1), T + K, 1)
            ).copy_(weight)
            weight_expanded = weight_expanded.narrow(2, P, T)  # B*H x T x T
        output = torch.bmm(weight_expanded, x)
        output = output.transpose(0, 1).contiguous().view(T, B, C)
        return output