File size: 9,642 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
def gen_forward():
kernels = [3, 5, 7, 15, 31, 63, 127, 255]
seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]]
head = """
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "lightconv_cuda.cuh"
std::vector<at::Tensor> lightconv_cuda_forward(at::Tensor input, at::Tensor filters, int padding_l) {
at::DeviceGuard g(input.device());
const auto minibatch = input.size(0);
const auto numFeatures = input.size(1);
const auto sequenceLength = input.size(2);
const auto numHeads = filters.size(0);
const auto filterSize = filters.size(1);
const auto numFiltersInBlock = numFeatures / numHeads;
const dim3 blocks(minibatch, numFeatures);
auto output = at::zeros_like(input);
auto stream = at::cuda::getCurrentCUDAStream();
"""
sequence_if = """
if (sequenceLength <= {seq}) {{
switch(filterSize) {{
"""
case_k = """
case {k}:
"""
main_block = """
if (padding_l == {pad}) {{
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_forward", ([&] {{
lightconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t>
<<<blocks, {b_size}, 0, stream>>>(
input.data<scalar_t>(),
filters.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
output.data<scalar_t>());
}}));
}} else
"""
bad_padding = """
{
std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl;
}
break;
"""
bad_filter = """
default:
std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl;
}
"""
con_else = """
} else
"""
final_else = """
{
switch(filterSize) {
"""
final_return = """
}
return {output};
}
"""
with open("lightconv_cuda_forward.cu", "w") as forward:
forward.write(head)
for seq in seqs:
forward.write(sequence_if.format(seq=seq))
for k in kernels:
forward.write(case_k.format(k=k))
for pad in [k // 2, k - 1]:
forward.write(main_block.format(k=k, b_size=seq, pad=pad))
forward.write(bad_padding)
forward.write(bad_filter)
forward.write(con_else)
forward.write(final_else)
for k in kernels:
forward.write(case_k.format(k=k))
for pad in [k // 2, k - 1]:
forward.write(main_block.format(k=k, b_size=seq, pad=pad))
forward.write(bad_padding)
forward.write(bad_filter)
forward.write(final_return)
def gen_backward():
head = """
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "lightconv_cuda.cuh"
std::vector<at::Tensor> lightconv_cuda_backward(
at::Tensor gradOutput,
int padding_l,
at::Tensor input,
at::Tensor filters) {
// gradWrtInput
const int minibatch = input.size(0);
const int numFeatures = input.size(1);
const int sequenceLength = input.size(2);
const int numHeads = filters.size(0);
const int filterSize = filters.size(1);
const dim3 gradBlocks(minibatch, numFeatures);
const dim3 weightGradFirstpassShortBlocks(minibatch, numHeads);
const dim3 weightGradSecondpassBlocks(numHeads, filterSize);
const int numFiltersInBlock = numFeatures / numHeads;
auto gradInput = at::zeros_like(input);
auto gradFilters = at::zeros_like(filters);
at::DeviceGuard g(input.device());
auto stream = at::cuda::getCurrentCUDAStream();
switch(filterSize) {
"""
sequence_if = """
if (sequenceLength <= {seq}) {{
"""
case_k = """
case {k}:
"""
main_block = """
if (padding_l == {p}) {{
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_backward", ([&] {{
lightconv_grad_wrt_input_kernel<{k}, {b_size}, {p}, scalar_t>
<<<gradBlocks, {b_size}, 0, stream>>>(
gradOutput.data<scalar_t>(),
filters.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
gradInput.data<scalar_t>());
"""
weight_grad_short = """
at::Tensor tempSumGradFilters = at::zeros({{minibatch, numHeads, filterSize}}, input.options().dtype(at::kFloat));
lightconv_grad_wrt_weights_firstpass_short_kernel<{k}, {b_size}, {p}, scalar_t>
<<<weightGradFirstpassShortBlocks, {b_size}, 0, stream>>>(
input.data<scalar_t>(),
gradOutput.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
numHeads,
tempSumGradFilters.data<float>()
);
lightconv_grad_wrt_weights_secondpass_short_kernel<{k}, {b_size}, scalar_t>
<<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>(
tempSumGradFilters.data<float>(),
minibatch,
numFiltersInBlock,
gradFilters.data<scalar_t>()
);
}}));
}} else
"""
weight_grad = """
at::Tensor tempSumGradFilters = at::zeros({{minibatch, numFeatures, filterSize}}, input.options().dtype(at::kFloat));
lightconv_grad_wrt_weights_firstpass_kernel<{k}, {b_size}, {p}, scalar_t>
<<<gradBlocks, {b_size}, 0, stream>>>(
input.data<scalar_t>(),
gradOutput.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
tempSumGradFilters.data<float>()
);
lightconv_grad_wrt_weights_secondpass_kernel<{k}, {b_size}, scalar_t>
<<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>(
tempSumGradFilters.data<float>(),
minibatch,
numFiltersInBlock,
gradFilters.data<scalar_t>()
);
}}));
}} else
"""
bad_padding = """
{
std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl;
}
"""
breakout = """
break;
"""
bad_filter = """
default:
std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl;
"""
con_else = """
} else
"""
final_else = """
{
switch(filterSize) {
"""
last_return = """
}
return {gradInput, gradFilters};
}
"""
kernels = [3, 5, 7, 15, 31, 63, 127, 255]
seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]]
thresh = [32, 32, 64, 128, 256, -1, -1, -1]
max_mem = [-1, -1, -1, -1, -1, 192, 96, 64]
with open("lightconv_cuda_backward.cu", "w") as backward:
backward.write(head)
for (k, t, mem) in zip(kernels, thresh, max_mem):
backward.write(case_k.format(k=k))
for seq in seqs:
if (t == -1 or seq <= t) and (mem == -1 or seq < mem):
backward.write(sequence_if.format(seq=seq))
for p in [k // 2, k - 1]:
backward.write(main_block.format(k=k, b_size=seq, p=p))
backward.write(weight_grad_short.format(k=k, b_size=seq, p=p))
backward.write(bad_padding)
else:
for p in [k // 2, k - 1]:
backward.write(main_block.format(k=k, b_size=32, p=p))
backward.write(weight_grad.format(k=k, b_size=32, p=p))
backward.write(bad_padding)
backward.write(breakout)
break
backward.write(con_else)
backward.write(bad_filter)
backward.write(last_return)
if __name__ == "__main__":
gen_forward()
gen_backward()
|