File size: 10,609 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/**
 * Copyright (c) Facebook, Inc. and its affiliates.
 * 
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */

#include "lightconv_cuda.cuh"
#include "lightconv_cuda_forward.cu"
#include "lightconv_cuda_backward.cu"
#include "../cuda_utils.cu"

template<int FS, int SB, int padding_l, typename scalar_t>
__global__
void lightconv_forward_kernel(const scalar_t* input,
                              const scalar_t* filters,
                              int minibatch, int sequenceLength,
                              int numFeatures, int numFiltersInBlock,
                              scalar_t* output) {

  const int tid = threadIdx.x;
  const int batchIdx = blockIdx.x;
  const int featureIdx = blockIdx.y;
  const int filterIdx = featureIdx / numFiltersInBlock;

  const int IOOffset = numFeatures * sequenceLength * batchIdx + featureIdx * sequenceLength;
  const scalar_t* inputFeature = &input[IOOffset];
  scalar_t* outputFeature = &output[IOOffset];
  const scalar_t* inputFilter = &filters[filterIdx * FS];

  assert(blockDim.x == SB);

  scalar_t filter[FS];
  #pragma unroll
  for (int i = 0; i < FS; ++i) {
    filter[i] = inputFilter[i];
  }

  __shared__ scalar_t temp[SB + FS];
  zeroSharedMem<FS, SB, padding_l>(temp);

  const int numIterations = divUp<int, int>(sequenceLength, SB);

  for (int i = 0; i < numIterations; ++i) {
    // Read input into shared memory
    const int inputOffset = i * SB;

    load_input_to_shared<FS, SB, padding_l>(inputFeature, inputOffset, sequenceLength,
                                 i, numIterations, (numIterations == 1), temp);

    __syncthreads();

    scalar_t out = 0;
    #pragma unroll
    for (int j = 0; j < FS; ++j) {
      out += filter[j] * temp[tid + j];
    }

    // Write output
    const int outputOffset = inputOffset;
    if ((outputOffset + tid) < sequenceLength) {
      outputFeature[outputOffset + tid] = out;
    }

    __syncthreads();
  }
}

template<int FS, int SB, int padding_l, typename scalar_t>
__global__
void lightconv_grad_wrt_input_kernel(
    const scalar_t* input,
    const scalar_t* filters,
    int minibatch,
    int sequenceLength,
    int numFeatures,
    int numFiltersInBlock,
    scalar_t* output) {

  // input grad kernel is similar to forward kernel
  const int tid = threadIdx.x;
  const int batchIdx = blockIdx.x;
  const int featureIdx = blockIdx.y;
  const int filterIdx = featureIdx / numFiltersInBlock;

  const int IOOffset = numFeatures * sequenceLength * batchIdx + featureIdx * sequenceLength;
  const scalar_t* inputFeature = &input[IOOffset];
  scalar_t* outputFeature = &output[IOOffset];
  const scalar_t* inputFilter = &filters[filterIdx * FS];

  assert(blockDim.x == SB);

  scalar_t filter[FS];

  // The only change is loading the filter in reverse
  #pragma unroll
  for (int i = 0; i < FS; ++i) {
    filter[i] = inputFilter[FS - i - 1];
  }

  __shared__ scalar_t temp[SB + FS];
  const int padding = FS - padding_l - 1;
  zeroSharedMem<FS, SB, padding>(temp);

  __syncthreads();

  const int numIterations = divUp<int, int>(sequenceLength, SB);

  for (int i = 0; i < numIterations; ++i) {
    // Read input into shared memory
    const int inputOffset = i * SB;

    load_input_to_shared<FS, SB, padding>(inputFeature, inputOffset, sequenceLength,
                                 i, numIterations, false, temp);

    __syncthreads();

    scalar_t out = 0;
    #pragma unroll
    for (int j = 0; j < FS; ++j) {
      out += filter[j] * temp[tid + j];
    }

    // Write output
    const int outputOffset = inputOffset;
    if ((outputOffset + tid) < sequenceLength) {
      outputFeature[outputOffset + tid] = out;
    }

    __syncthreads();
  }
}

// This is by far the most expensive kernel in terms of time taken.
// Can be 16x slower than the forward or grad_wrt_input when filter size is 31
template<int FS, int SB, int padding_l, typename scalar_t>
__global__
void lightconv_grad_wrt_weights_firstpass_short_kernel(
    const scalar_t* input,
    const scalar_t* gradInput,
    int minibatch,
    int sequenceLength,
    int numFeatures,
    int numFiltersInBlock,
    int numHeads,
    float* output) {

  const int tid = threadIdx.x;
  const int batchIdx = blockIdx.x;
  const int filterIdx = blockIdx.y;

  const int numIterations = divUp<int, int>(sequenceLength, SB);

  float* tempOutputGradWeight = &output[filterIdx * FS * minibatch];

  assert(blockDim.x == SB);

  __shared__ scalar_t tempInput[SB + FS];
  __shared__ scalar_t tempGradInput[SB + FS];

  // local weight accumulation
  float accumWeights[FS];

  // Initialize memory
  for (int i = 0; i < FS; ++i) {
    accumWeights[i] = float(0.0);
  }


  // loop over each sequence within filterblock
  for (int idxInFilterBlock = 0; idxInFilterBlock < numFiltersInBlock; ++idxInFilterBlock) {

    const int featureOffset = batchIdx * numFeatures * sequenceLength + (filterIdx * numFiltersInBlock + idxInFilterBlock) * sequenceLength;
    const scalar_t* inputFeature = &input[featureOffset];
    const scalar_t* gradInputFeature = &gradInput[featureOffset];

    zeroSharedMem<FS, SB, padding_l>(tempInput);
    zeroSharedMem<FS, SB, (FS/2)>(tempGradInput);
    __syncthreads();

    for (int i = 0; i < numIterations; ++i) {

      const int inputOffset = i * SB;

      load_input_to_shared<FS, SB, padding_l>(inputFeature, inputOffset, sequenceLength,
                                    i, numIterations, false, tempInput);
      load_input_to_shared<FS, SB, (FS/2)>(gradInputFeature, inputOffset, sequenceLength,
                                    i, numIterations, false, tempGradInput);

      __syncthreads();

      const int gradIndex = (FS/2) + tid;
      scalar_t tempGrad = tempGradInput[gradIndex];

      #pragma unroll
      for (int j = 0; j < FS; j++) {
        const int inputIndex = tid + j;
        accumWeights[j] += tempInput[inputIndex] * tempGrad;
      }

      __syncthreads();

    }

  }

  // Row-major sum
  for (int filterWeightIdx = 0; filterWeightIdx < FS; ++filterWeightIdx) {

    float temp;
    if (tid < sequenceLength) {
        temp = accumWeights[filterWeightIdx];
    } else {
        temp = float(0.0);
    }

    const int outputOffset = filterWeightIdx * minibatch + batchIdx;

    temp = blockReduce(temp);

    if (tid == 0) {
      tempOutputGradWeight[outputOffset] = temp;
    }
  }
}

template<int FS, int SB, typename scalar_t>
__global__
void lightconv_grad_wrt_weights_secondpass_short_kernel(
    const float* input,
    const int minibatch,
    const int numFiltersInBlock,
    scalar_t* output) {

  assert(blockDim.x == SB);

  const int tid = threadIdx.x;

  const int filterIdx = blockIdx.x;
  const int filterWeightIdx = blockIdx.y;

  const int inputOffset = filterIdx * FS * minibatch +
                          filterWeightIdx * minibatch;
  const float* tempInput = &input[inputOffset];

  // read into shared memory for reduction
  int readIndex = tid;

  float sum = 0.0;
  while (readIndex < minibatch) {
    sum += tempInput[readIndex];
    readIndex += SB;
  }

  float temp = blockReduce(sum);

  if (tid == 0) {
    output[blockIdx.x * FS + blockIdx.y] = temp;
  }
}

// This is by far the most expensive kernel in terms of time taken.
// Can be 16x slower than the forward or grad_wrt_input when filter size is 31
template<int FS, int SB, int padding_l, typename scalar_t>
__global__
void lightconv_grad_wrt_weights_firstpass_kernel(
    const scalar_t* input,
    const scalar_t* gradInput,
    int minibatch,
    int sequenceLength,
    int numFeatures,
    int numFiltersInBlock,
    float* output) {

  assert(blockDim.x == SB);

  const int tid = threadIdx.x;
  const int batchIdx = blockIdx.x;
  const int featureIdx = blockIdx.y;
  const int filterIdx = featureIdx / numFiltersInBlock;
  const int idxInFilterBlock = featureIdx % numFiltersInBlock;

  const int numIterations = divUp<int, int>(sequenceLength, SB);

  float temp;

  __shared__ scalar_t tempInput[SB + FS];
  __shared__ scalar_t tempGradInput[SB + FS];
  zeroSharedMem<FS, SB, padding_l>(tempInput);
  zeroSharedMem<FS, SB, (FS/2)>(tempGradInput);
  __syncthreads();

  float accumWeights[FS];

  for (int i = 0; i < FS; ++i) {
    accumWeights[i] = float(0.0);
  }

  const int IOOffset = batchIdx * numFeatures * sequenceLength + featureIdx * sequenceLength;
  const scalar_t* inputFeature = &input[IOOffset];
  const scalar_t* gradInputFeature = &gradInput[IOOffset];
  float* tempOutputGradWeight = &output[filterIdx * FS * minibatch * numFiltersInBlock];

  for (int i = 0; i < numIterations; ++i) {
    const int inputOffset = i * SB;

    load_input_to_shared<FS, SB, padding_l>(inputFeature, inputOffset, sequenceLength,
                                 i, numIterations, false, tempInput);
    load_input_to_shared<FS, SB, (FS/2)>(gradInputFeature, inputOffset, sequenceLength,
                                 i, numIterations, false, tempGradInput);
    __syncthreads();

    #pragma unroll
    for (int j = 0; j < FS; ++j) {
      accumWeights[j] += tempInput[tid + j] * tempGradInput[tid + (FS/2)];
    }

    __syncthreads();
  }

  // Row-major sum
  for (int filterWeightIdx = 0; filterWeightIdx < FS; ++filterWeightIdx) {

    // Write to shared memory before reduction
    if (tid < sequenceLength) {
      temp = accumWeights[filterWeightIdx];
    } else {
      temp = float(0.0);
    }

    temp = blockReduce(temp);

    const int outputOffset = filterWeightIdx * minibatch * numFiltersInBlock +
                             batchIdx * numFiltersInBlock +
                             idxInFilterBlock;

    if (tid == 0) {
      tempOutputGradWeight[outputOffset] = temp;
    }
  }
}

template<int FS, int SB, typename scalar_t>
__global__
void lightconv_grad_wrt_weights_secondpass_kernel(
    const float* input,
    const int minibatch,
    const int numFiltersInBlock,
    scalar_t* output) {

  assert(blockDim.x == SB);
  const int tid = threadIdx.x;

  // What is the id within a minibatch
  const int filterIdx = blockIdx.x;
  const int filterWeightIdx = blockIdx.y;

  const int inputOffset = filterIdx * FS * minibatch * numFiltersInBlock +
                          filterWeightIdx * minibatch * numFiltersInBlock;
  const float* tempInput = &input[inputOffset];

  int readIndex = tid;

  float sum = float(0.0);
  while (readIndex < (minibatch * numFiltersInBlock)) {
    sum += tempInput[readIndex];
    readIndex += SB;
  }

  float temp = blockReduce(sum);

  if (tid == 0) {
    output[blockIdx.x * FS + blockIdx.y] = temp;
  }
}