File size: 4,799 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import lightconv_cuda
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules.fairseq_dropout import FairseqDropout
from torch import nn
from torch.autograd import Function


class lightconvFunction(Function):
    @staticmethod
    def forward(ctx, x, weights, padding_l):
        ctx.padding_l = padding_l
        outputs = lightconv_cuda.forward(x, weights, padding_l)
        variables = [x, weights]
        ctx.save_for_backward(*variables)
        return outputs[0]

    @staticmethod
    def backward(ctx, grad_output):
        outputs = lightconv_cuda.backward(
            grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors
        )
        grad_input, grad_weights = outputs
        return grad_input, grad_weights, None


@with_incremental_state
class LightconvLayer(nn.Module):
    def __init__(
        self,
        input_size,
        kernel_size=1,
        padding_l=None,
        weight_softmax=False,
        num_heads=1,
        weight_dropout=0.0,
        bias=False,
    ):
        super(LightconvLayer, self).__init__()
        self.input_size = input_size
        self.kernel_size = kernel_size
        self.padding_l = padding_l
        self.num_heads = num_heads
        self.weight_softmax = weight_softmax
        self.weight_dropout_module = FairseqDropout(
            weight_dropout, module_name=self.__class__.__name__
        )

        self.weight = nn.Parameter(torch.Tensor(num_heads, kernel_size))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(input_size))
        else:
            self.bias = None
        self.reset_parameters()

    def upgrade_state_dict_named(self, state_dict, name):
        prefix = name + "." if name != "" else ""
        for k, v in state_dict.items():
            if k.endswith(prefix + "weight"):
                if v.dim() == 3 and v.size(1) == 1:
                    state_dict[k] = v.squeeze(1)

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.weight)
        if self.bias is not None:
            nn.init.constant_(self.bias, 0.0)

    def forward(self, x, incremental_state=None):

        # during inference time, incremental BMM is faster
        if incremental_state is not None:
            T, B, C = x.size()
            K, H = self.kernel_size, self.num_heads
            R = C // H
            input_buffer = self._get_input_buffer(incremental_state)
            if input_buffer is None:
                input_buffer = x.new()
            x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3)
            if self.kernel_size > 1:
                self._set_input_buffer(
                    incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :]
                )
            x_unfold = x_unfold.view(T * B * H, R, -1)

            weight = self.weight
            if self.weight_softmax:
                weight = F.softmax(weight.float(), dim=1).type_as(weight)

            weight = weight[:, -x_unfold.size(2) :]

            K = weight.size(1)

            weight = (
                weight.view(1, H, K)
                .expand(T * B, H, K)
                .contiguous()
                .view(T * B * H, K, 1)
            )

            weight = self.weight_dropout_module(weight)
            output = torch.bmm(x_unfold, weight)  # T*B*H x R x 1
            output = output.view(T, B, C)
            return output

        # during training time, use CUDA kernel
        else:
            x = x.permute(1, 2, 0).contiguous()
            weight = self.weight
            if self.weight_softmax:
                weight = F.softmax(self.weight, -1)
            if self.weight_dropout_module.p:
                weight = self.weight_dropout_module(weight)
            return lightconvFunction.apply(x, weight, self.padding_l).permute(2, 0, 1)

    def reorder_incremental_state(self, incremental_state, new_order):
        input_buffer = self._get_input_buffer(incremental_state)
        if input_buffer is not None:
            input_buffer = input_buffer.index_select(1, new_order)
            self._set_input_buffer(incremental_state, input_buffer)

    def _get_input_buffer(self, incremental_state):
        return utils.get_incremental_state(self, incremental_state, "input_buffer")

    def _set_input_buffer(self, incremental_state, new_buffer):
        return utils.set_incremental_state(
            self, incremental_state, "input_buffer", new_buffer
        )

    def half(self):
        return self._apply(lambda t: t.half() if t.is_floating_point() else t)