File size: 4,326 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Callable, Optional

import torch
import torch.nn as nn
from fairseq import utils
from fairseq.modules import LayerNorm, MultiheadAttention
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise


class TransformerSentenceEncoderLayer(nn.Module):
    """
    Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
    models.
    """

    def __init__(
        self,
        embedding_dim: int = 768,
        ffn_embedding_dim: int = 3072,
        num_attention_heads: int = 8,
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        activation_fn: str = "relu",
        export: bool = False,
        q_noise: float = 0.0,
        qn_block_size: int = 8,
        init_fn: Callable = None,
    ) -> None:
        super().__init__()

        if init_fn is not None:
            init_fn()

        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.num_attention_heads = num_attention_heads
        self.attention_dropout = attention_dropout
        self.q_noise = q_noise
        self.qn_block_size = qn_block_size

        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )
        self.activation_dropout_module = FairseqDropout(
            activation_dropout, module_name=self.__class__.__name__
        )

        # Initialize blocks
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.self_attn = self.build_self_attention(
            self.embedding_dim,
            num_attention_heads,
            dropout=attention_dropout,
            self_attention=True,
            q_noise=q_noise,
            qn_block_size=qn_block_size,
        )

        # layer norm associated with the self attention layer
        self.self_attn_layer_norm = LayerNorm(self.embedding_dim, export=export)

        self.fc1 = self.build_fc1(
            self.embedding_dim,
            ffn_embedding_dim,
            q_noise=q_noise,
            qn_block_size=qn_block_size,
        )
        self.fc2 = self.build_fc2(
            ffn_embedding_dim,
            self.embedding_dim,
            q_noise=q_noise,
            qn_block_size=qn_block_size,
        )

        # layer norm associated with the position wise feed-forward NN
        self.final_layer_norm = LayerNorm(self.embedding_dim, export=export)

    def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
        return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)

    def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
        return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)

    def build_self_attention(
        self,
        embed_dim,
        num_attention_heads,
        dropout,
        self_attention,
        q_noise,
        qn_block_size,
    ):
        return MultiheadAttention(
            embed_dim,
            num_attention_heads,
            dropout=dropout,
            self_attention=True,
            q_noise=q_noise,
            qn_block_size=qn_block_size,
        )

    def forward(
        self,
        x: torch.Tensor,
        self_attn_mask: Optional[torch.Tensor] = None,
        self_attn_padding_mask: Optional[torch.Tensor] = None,
    ):
        """
        LayerNorm is applied either before or after the self-attention/ffn
        modules similar to the original Transformer implementation.
        """
        residual = x
        x, attn = self.self_attn(
            query=x,
            key=x,
            value=x,
            key_padding_mask=self_attn_padding_mask,
            need_weights=False,
            attn_mask=self_attn_mask,
        )
        x = self.dropout_module(x)
        x = residual + x
        x = self.self_attn_layer_norm(x)

        residual = x
        x = self.activation_fn(self.fc1(x))
        x = self.activation_dropout_module(x)
        x = self.fc2(x)
        x = self.dropout_module(x)
        x = residual + x
        x = self.final_layer_norm(x)
        return x, attn