File size: 5,310 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import ctypes
import math
import sys
from dataclasses import dataclass, field

import torch
from fairseq.dataclass import FairseqDataclass
from fairseq.scoring import BaseScorer, register_scorer
from fairseq.scoring.tokenizer import EvaluationTokenizer


class BleuStat(ctypes.Structure):
    _fields_ = [
        ("reflen", ctypes.c_size_t),
        ("predlen", ctypes.c_size_t),
        ("match1", ctypes.c_size_t),
        ("count1", ctypes.c_size_t),
        ("match2", ctypes.c_size_t),
        ("count2", ctypes.c_size_t),
        ("match3", ctypes.c_size_t),
        ("count3", ctypes.c_size_t),
        ("match4", ctypes.c_size_t),
        ("count4", ctypes.c_size_t),
    ]


@dataclass
class SacrebleuConfig(FairseqDataclass):
    sacrebleu_tokenizer: EvaluationTokenizer.ALL_TOKENIZER_TYPES = field(
        default="13a", metadata={"help": "tokenizer"}
    )
    sacrebleu_lowercase: bool = field(
        default=False, metadata={"help": "apply lowercasing"}
    )
    sacrebleu_char_level: bool = field(
        default=False, metadata={"help": "evaluate at character level"}
    )


@register_scorer("sacrebleu", dataclass=SacrebleuConfig)
class SacrebleuScorer(BaseScorer):
    def __init__(self, cfg):
        super(SacrebleuScorer, self).__init__(cfg)
        import sacrebleu

        self.sacrebleu = sacrebleu
        self.tokenizer = EvaluationTokenizer(
            tokenizer_type=cfg.sacrebleu_tokenizer,
            lowercase=cfg.sacrebleu_lowercase,
            character_tokenization=cfg.sacrebleu_char_level,
        )

    def add_string(self, ref, pred):
        self.ref.append(self.tokenizer.tokenize(ref))
        self.pred.append(self.tokenizer.tokenize(pred))

    def score(self, order=4):
        return self.result_string(order).score

    def result_string(self, order=4):
        if order != 4:
            raise NotImplementedError
        # tokenization and lowercasing are performed by self.tokenizer instead.
        return self.sacrebleu.corpus_bleu(
            self.pred, [self.ref], tokenize="none"
        ).format()


@dataclass
class BleuConfig(FairseqDataclass):
    pad: int = field(default=1, metadata={"help": "padding index"})
    eos: int = field(default=2, metadata={"help": "eos index"})
    unk: int = field(default=3, metadata={"help": "unk index"})


@register_scorer("bleu", dataclass=BleuConfig)
class Scorer(object):
    def __init__(self, cfg):
        self.stat = BleuStat()
        self.pad = cfg.pad
        self.eos = cfg.eos
        self.unk = cfg.unk

        try:
            from fairseq import libbleu
        except ImportError as e:
            sys.stderr.write(
                "ERROR: missing libbleu.so. run `pip install --editable .`\n"
            )
            raise e

        self.C = ctypes.cdll.LoadLibrary(libbleu.__file__)

        self.reset()

    def reset(self, one_init=False):
        if one_init:
            self.C.bleu_one_init(ctypes.byref(self.stat))
        else:
            self.C.bleu_zero_init(ctypes.byref(self.stat))

    def add(self, ref, pred):
        if not isinstance(ref, torch.IntTensor):
            raise TypeError("ref must be a torch.IntTensor (got {})".format(type(ref)))
        if not isinstance(pred, torch.IntTensor):
            raise TypeError("pred must be a torch.IntTensor(got {})".format(type(pred)))

        # don't match unknown words
        rref = ref.clone()
        assert not rref.lt(0).any()
        rref[rref.eq(self.unk)] = -999

        rref = rref.contiguous().view(-1)
        pred = pred.contiguous().view(-1)

        self.C.bleu_add(
            ctypes.byref(self.stat),
            ctypes.c_size_t(rref.size(0)),
            ctypes.c_void_p(rref.data_ptr()),
            ctypes.c_size_t(pred.size(0)),
            ctypes.c_void_p(pred.data_ptr()),
            ctypes.c_int(self.pad),
            ctypes.c_int(self.eos),
        )

    def score(self, order=4):
        psum = sum(
            math.log(p) if p > 0 else float("-Inf") for p in self.precision()[:order]
        )
        return self.brevity() * math.exp(psum / order) * 100

    def precision(self):
        def ratio(a, b):
            return a / b if b > 0 else 0

        return [
            ratio(self.stat.match1, self.stat.count1),
            ratio(self.stat.match2, self.stat.count2),
            ratio(self.stat.match3, self.stat.count3),
            ratio(self.stat.match4, self.stat.count4),
        ]

    def brevity(self):
        r = self.stat.reflen / self.stat.predlen
        return min(1, math.exp(1 - r))

    def result_string(self, order=4):
        assert order <= 4, "BLEU scores for order > 4 aren't supported"
        fmt = "BLEU{} = {:2.2f}, {:2.1f}"
        for _ in range(1, order):
            fmt += "/{:2.1f}"
        fmt += " (BP={:.3f}, ratio={:.3f}, syslen={}, reflen={})"
        bleup = [p * 100 for p in self.precision()[:order]]
        return fmt.format(
            order,
            self.score(order=order),
            *bleup,
            self.brevity(),
            self.stat.predlen / self.stat.reflen,
            self.stat.predlen,
            self.stat.reflen
        )