File size: 5,164 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os.path as op
from argparse import Namespace
from fairseq.data import Dictionary, encoders
from fairseq.data.audio.speech_to_text_dataset import (
S2TDataConfig,
SpeechToTextDataset,
SpeechToTextDatasetCreator,
get_features_or_waveform
)
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("speech_to_text")
class SpeechToTextTask(LegacyFairseqTask):
@staticmethod
def add_args(parser):
parser.add_argument("data", help="manifest root path")
parser.add_argument(
"--config-yaml",
type=str,
default="config.yaml",
help="Configuration YAML filename (under manifest root)",
)
parser.add_argument(
"--max-source-positions",
default=6000,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
def __init__(self, args, tgt_dict):
super().__init__(args)
self.tgt_dict = tgt_dict
self.data_cfg = S2TDataConfig(op.join(args.data, args.config_yaml))
@classmethod
def setup_task(cls, args, **kwargs):
data_cfg = S2TDataConfig(op.join(args.data, args.config_yaml))
dict_path = op.join(args.data, data_cfg.vocab_filename)
if not op.isfile(dict_path):
raise FileNotFoundError(f"Dict not found: {dict_path}")
tgt_dict = Dictionary.load(dict_path)
logger.info(
f"dictionary size ({data_cfg.vocab_filename}): " f"{len(tgt_dict):,}"
)
if getattr(args, "train_subset", None) is not None:
if not all(s.startswith("train") for s in args.train_subset.split(",")):
raise ValueError('Train splits should be named like "train*".')
return cls(args, tgt_dict)
def build_criterion(self, args):
from fairseq import criterions
if self.data_cfg.prepend_tgt_lang_tag and args.ignore_prefix_size != 1:
raise ValueError(
'Please set "--ignore-prefix-size 1" since '
"target language ID token is prepended as BOS."
)
return criterions.build_criterion(args, self)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
is_train_split = split.startswith("train")
pre_tokenizer = self.build_tokenizer(self.args)
bpe_tokenizer = self.build_bpe(self.args)
self.datasets[split] = SpeechToTextDatasetCreator.from_tsv(
self.args.data,
self.data_cfg,
split,
self.tgt_dict,
pre_tokenizer,
bpe_tokenizer,
is_train_split=is_train_split,
epoch=epoch,
seed=self.args.seed,
)
@property
def target_dictionary(self):
return self.tgt_dict
@property
def source_dictionary(self):
return None
def max_positions(self):
return self.args.max_source_positions, self.args.max_target_positions
def build_model(self, args):
args.input_feat_per_channel = self.data_cfg.input_feat_per_channel
args.input_channels = self.data_cfg.input_channels
return super(SpeechToTextTask, self).build_model(args)
def build_generator(
self,
models,
args,
seq_gen_cls=None,
extra_gen_cls_kwargs=None,
):
if self.data_cfg.prepend_tgt_lang_tag and args.prefix_size != 1:
raise ValueError(
'Please set "--prefix-size 1" since '
"target language ID token is prepended as BOS."
)
lang_token_ids = {
i
for s, i in self.tgt_dict.indices.items()
if SpeechToTextDataset.is_lang_tag(s)
}
extra_gen_cls_kwargs = {"symbols_to_strip_from_output": lang_token_ids}
return super().build_generator(
models, args, seq_gen_cls=None, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
def build_tokenizer(self, args):
logger.info(f"pre-tokenizer: {self.data_cfg.pre_tokenizer}")
return encoders.build_tokenizer(Namespace(**self.data_cfg.pre_tokenizer))
def build_bpe(self, args):
logger.info(f"tokenizer: {self.data_cfg.bpe_tokenizer}")
return encoders.build_bpe(Namespace(**self.data_cfg.bpe_tokenizer))
def get_interactive_tokens_and_lengths(self, lines, encode_fn):
n_frames = [get_features_or_waveform(p).shape[0] for p in lines]
return lines, n_frames
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
return SpeechToTextDataset(
"interactive", False, self.data_cfg, src_tokens, src_lengths
)
|