|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict, defaultdict |
|
import json |
|
import os |
|
import logging |
|
|
|
from fairseq import options, models |
|
from fairseq.data import ( |
|
data_utils, |
|
Dictionary, |
|
LanguagePairDataset, |
|
IndexedDataset, |
|
FairseqDataset, |
|
) |
|
from .multitask_data_utils import ( |
|
MultitaskDatasetWrapper, |
|
MultidatasetEpochBatchIterator, |
|
) |
|
|
|
|
|
from fairseq.tasks import LegacyFairseqTask, register_task |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@register_task("laser") |
|
class LaserTask(LegacyFairseqTask): |
|
@staticmethod |
|
def add_args(parser): |
|
"""Add task-specific arguments to the parser.""" |
|
parser.add_argument( |
|
"configfile", metavar="PATH", help="dataset configuration file in json" |
|
) |
|
parser.add_argument( |
|
"--weighting-alpha", |
|
type=float, |
|
default=None, |
|
help="alpha for automatic weighting", |
|
) |
|
parser.add_argument( |
|
"--raw-text", action="store_true", help="load raw text dataset" |
|
) |
|
parser.add_argument( |
|
"--left-pad-source", |
|
default="True", |
|
type=str, |
|
metavar="BOOL", |
|
help="pad the source on the left (default: True)", |
|
) |
|
parser.add_argument( |
|
"--left-pad-target", |
|
default="False", |
|
type=str, |
|
metavar="BOOL", |
|
help="pad the target on the left (default: False)", |
|
) |
|
parser.add_argument( |
|
"--max-source-positions", |
|
default=1024, |
|
type=int, |
|
metavar="N", |
|
help="max number of tokens in the source sequence", |
|
) |
|
parser.add_argument( |
|
"--max-target-positions", |
|
default=1024, |
|
type=int, |
|
metavar="N", |
|
help="max number of tokens in the target sequence", |
|
) |
|
|
|
def __init__(self, args, config, src_dictionary, tgt_dictionary, num_tasks): |
|
super().__init__(args) |
|
self.config = config |
|
self.src_dictionary = src_dictionary |
|
self.tgt_dictionary = tgt_dictionary |
|
self.num_tasks = num_tasks |
|
|
|
@classmethod |
|
def setup_task(cls, args, **kwargs): |
|
with open(args.configfile, "r") as f: |
|
config = json.load(f) |
|
num_tasks = max(dataset["id"] for dataset in config["train"]) + 1 |
|
|
|
args.left_pad_source = options.eval_bool(args.left_pad_source) |
|
args.left_pad_target = options.eval_bool(args.left_pad_target) |
|
|
|
src_dictionary = Dictionary.load(config["src_vocab"]) |
|
tgt_dictionary = Dictionary.load(config["tgt_vocab"]) |
|
|
|
logger.info( |
|
"| src Dictionary {} : {} types".format( |
|
config["src_vocab"], len(src_dictionary) |
|
) |
|
) |
|
logger.info( |
|
"| tgt Dictionary {} : {} types".format( |
|
config["tgt_vocab"], len(tgt_dictionary) |
|
) |
|
) |
|
|
|
return cls(args, config, src_dictionary, tgt_dictionary, num_tasks) |
|
|
|
|
|
def build_model(self, args): |
|
model = models.build_model(args, self) |
|
return model |
|
|
|
def dataset(self, split): |
|
if split not in self.datasets: |
|
raise KeyError("Dataset not loaded: " + split) |
|
return self.datasets[split] |
|
|
|
def load_dataset(self, split, epoch=1, **kwargs): |
|
"""Load a dataset split.""" |
|
|
|
def indexed_dataset(path, dictionary): |
|
if self.args.raw_text: |
|
raise Exception("Unable to handle raw text.") |
|
dataset = IndexedDataset(path, fix_lua_indexing=True) |
|
|
|
return dataset |
|
|
|
pair_datasets = OrderedDict() |
|
|
|
if split == "valid": |
|
self.datasets[split] = pair_datasets |
|
return |
|
|
|
if split not in self.config: |
|
raise FileNotFoundError( |
|
"Dataset not found in config file: {}".format(split) |
|
) |
|
|
|
size_by_corpus = defaultdict(int) |
|
size_sum = 0 |
|
size_sum_with_subsampling = 0 |
|
init_pair_datasets = {} |
|
|
|
for dataset_config in self.config[split]: |
|
src_path = os.path.dirname(dataset_config["src"]) |
|
corpus_name = src_path.split("/")[-2] |
|
language_pair_name = src_path.split("/")[-1] |
|
pair_datasets_key = corpus_name + "-" + language_pair_name |
|
|
|
logger.info(f"loading... {pair_datasets_key}") |
|
if "src" in dataset_config: |
|
src_dataset = indexed_dataset( |
|
dataset_config["src"], self.src_dictionary |
|
) |
|
else: |
|
src_dataset = None |
|
|
|
if "tgt" in dataset_config: |
|
tgt_dataset = indexed_dataset( |
|
dataset_config["tgt"], self.tgt_dictionary |
|
) |
|
else: |
|
tgt_dataset = None |
|
|
|
dataset = LanguagePairDataset( |
|
src_dataset, |
|
src_dataset.sizes, |
|
self.src_dictionary, |
|
tgt_dataset, |
|
tgt_dataset.sizes, |
|
self.tgt_dictionary, |
|
left_pad_source=self.args.left_pad_source, |
|
left_pad_target=self.args.left_pad_target, |
|
) |
|
|
|
if pair_datasets_key in init_pair_datasets: |
|
logger.warning( |
|
f"Ignoring already added {pair_datasets_key}. " |
|
f"Consider using `sample` key in order to upsample." |
|
) |
|
else: |
|
init_pair_datasets[pair_datasets_key] = { |
|
"dataset": dataset, |
|
"sample": dataset_config.get("sample", None), |
|
"id": dataset_config.get("id", None), |
|
"len": len(dataset), |
|
} |
|
|
|
length_sum = 0 |
|
weighted_freqs_sum = 0 |
|
freq_per_dataset = {} |
|
vmax = 0 |
|
vmin = 1 |
|
weighted_freq_per_dataset = {} |
|
|
|
if self.args.weighting_alpha: |
|
for key in init_pair_datasets: |
|
if init_pair_datasets[key]["sample"] is None: |
|
length_sum += len(init_pair_datasets[key]["dataset"]) |
|
|
|
for key in init_pair_datasets: |
|
if init_pair_datasets[key]["sample"] is None: |
|
val = float(init_pair_datasets[key]["len"]) / length_sum |
|
freq_per_dataset[key] = val |
|
weighted_freqs_sum += val ** self.args.weighting_alpha |
|
|
|
for key in freq_per_dataset: |
|
val = ( |
|
freq_per_dataset[key] ** self.args.weighting_alpha |
|
/ weighted_freqs_sum |
|
) |
|
vmin = min(vmin, val) |
|
vmax = max(vmax, val) |
|
weighted_freq_per_dataset[key] = val |
|
|
|
for pair_datasets_key in init_pair_datasets: |
|
dataset_config = init_pair_datasets[pair_datasets_key] |
|
dataset = dataset_config["dataset"] |
|
sample = dataset_config["sample"] |
|
if sample is None: |
|
sample = 1.0 |
|
|
|
if pair_datasets_key in weighted_freq_per_dataset: |
|
w = vmax / weighted_freq_per_dataset[pair_datasets_key] |
|
sample = w |
|
|
|
sample = round(sample) |
|
|
|
initial_sample = sample |
|
initial_pair_datasets_key = pair_datasets_key |
|
|
|
while sample >= 1.0: |
|
assert ( |
|
pair_datasets_key not in pair_datasets |
|
), f"{pair_datasets_key} already in" |
|
size_sum_with_subsampling += len(dataset) |
|
pair_datasets[pair_datasets_key] = MultitaskDatasetWrapper( |
|
dataset, dataset_config.get("id", 0), 1.0, name=pair_datasets_key |
|
) |
|
size_sum += len(dataset) |
|
sample -= 1.0 |
|
pair_datasets_key += "-up" |
|
|
|
assert sample < 1e-6, f"sample remains > 0 {pair_datasets_key}" |
|
|
|
logger.info( |
|
f"added pair {initial_pair_datasets_key} length {len(dataset)} new_length = {len(dataset)*initial_sample}" |
|
) |
|
size_by_corpus[corpus_name] += len(dataset) |
|
|
|
self.datasets[split] = pair_datasets |
|
logger.info( |
|
f"Datasets number = {len(self.datasets[split])} size = {size_sum} size_sum_with_subsampling = {size_sum_with_subsampling}" |
|
) |
|
|
|
@property |
|
def source_dictionary(self): |
|
return self.src_dictionary |
|
|
|
@property |
|
def target_dictionary(self): |
|
return self.tgt_dictionary |
|
|
|
def get_batch_iterator( |
|
self, |
|
dataset, |
|
max_tokens=None, |
|
max_sentences=None, |
|
max_positions=None, |
|
ignore_invalid_inputs=False, |
|
required_batch_size_multiple=1, |
|
seed=1, |
|
num_shards=1, |
|
shard_id=0, |
|
num_workers=0, |
|
epoch=1, |
|
data_buffer_size=0, |
|
disable_iterator_cache=False, |
|
): |
|
|
|
assert isinstance(dataset, OrderedDict) |
|
assert len(dataset) |
|
assert isinstance(dataset[next(iter(dataset))], FairseqDataset) |
|
|
|
|
|
for _, dt in dataset.items(): |
|
dt.set_epoch(epoch) |
|
|
|
indices = OrderedDict() |
|
batch_sampler = OrderedDict() |
|
|
|
with data_utils.numpy_seed(seed + epoch): |
|
for key, dt in dataset.items(): |
|
logger.info(f"\t ordered_indices {key}") |
|
indices[key] = dt.ordered_indices() |
|
|
|
|
|
if max_positions is not None: |
|
for key, dt in dataset.items(): |
|
logger.info(f"\t filter_by_size {key}") |
|
indices[key], ignored = dt.filter_indices_by_size( |
|
indices[key], max_positions |
|
) |
|
|
|
for key, dt in dataset.items(): |
|
logger.info(f"\t batch_by_size {key}") |
|
batch_sampler[key] = data_utils.batch_by_size( |
|
indices[key], |
|
dt.num_tokens, |
|
max_tokens=max_tokens, |
|
max_sentences=max_sentences, |
|
required_batch_size_multiple=required_batch_size_multiple, |
|
) |
|
|
|
epoch_iter = MultidatasetEpochBatchIterator( |
|
dataset=dataset, |
|
batch_sampler=batch_sampler, |
|
seed=seed, |
|
num_shards=num_shards, |
|
shard_id=shard_id, |
|
num_workers=num_workers, |
|
epoch=epoch, |
|
) |
|
|
|
return epoch_iter |
|
|