|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import io |
|
import logging |
|
import math |
|
import os |
|
import os.path as op |
|
import sys |
|
|
|
import tqdm |
|
from dump_hubert_feature import HubertFeatureReader |
|
from fairseq.data.audio.audio_utils import get_waveform |
|
from fairseq.data.audio.speech_to_text_dataset import ( |
|
read_from_uncompressed_zip, |
|
) |
|
from npy_append_array import NpyAppendArray |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
level=os.environ.get("LOGLEVEL", "INFO").upper(), |
|
stream=sys.stdout, |
|
) |
|
logger = logging.getLogger("dump_hubert_feature_s2t") |
|
|
|
|
|
class HubertFeatureReaderS2T(HubertFeatureReader): |
|
def read_audio(self, path, ref_len=None): |
|
path, *extra = path.split(":") |
|
assert len(extra) == 2 |
|
assert path.endswith(".zip") |
|
|
|
data = read_from_uncompressed_zip(path, int(extra[0]), int(extra[1])) |
|
f = io.BytesIO(data) |
|
wav, sr = get_waveform(f) |
|
assert sr == self.task.cfg.sample_rate, sr |
|
if wav.ndim == 2: |
|
wav = wav.mean(-1) |
|
assert wav.ndim == 1, wav.ndim |
|
if ref_len is not None and abs(ref_len - len(wav)) > 160: |
|
logging.warning(f"ref {ref_len} != read {len(wav)} ({path})") |
|
return wav |
|
|
|
|
|
def get_path_iterator(root, tsv, nshard, rank): |
|
with open(tsv) as f: |
|
reader = csv.DictReader( |
|
f, |
|
delimiter="\t", |
|
quotechar=None, |
|
doublequote=False, |
|
lineterminator="\n", |
|
quoting=csv.QUOTE_NONE, |
|
) |
|
subpaths = [op.join(root, e["audio"]) for e in reader] |
|
|
|
tot = len(subpaths) |
|
shard_size = math.ceil(tot / nshard) |
|
start, end = rank * shard_size, min((rank + 1) * shard_size, tot) |
|
assert start < end, "start={start}, end={end}" |
|
logger.info( |
|
f"rank {rank} of {nshard}, process {end-start} " |
|
f"({start}-{end}) out of {tot}" |
|
) |
|
|
|
subpaths = subpaths[start:end] |
|
|
|
def iterate(): |
|
for subpath in subpaths: |
|
yield op.join(root, subpath) |
|
|
|
return iterate, len(subpaths) |
|
|
|
|
|
def dump_feature( |
|
root, |
|
tsv_path, |
|
ckpt_path, |
|
layer, |
|
nshard, |
|
rank, |
|
feat_dir, |
|
feat_name, |
|
max_chunk, |
|
): |
|
reader = HubertFeatureReaderS2T(ckpt_path, layer, max_chunk) |
|
generator, num = get_path_iterator(root, tsv_path, nshard, rank) |
|
iterator = generator() |
|
|
|
feat_path = f"{feat_dir}/{feat_name}_{rank}_{nshard}.npy" |
|
leng_path = f"{feat_dir}/{feat_name}_{rank}_{nshard}.len" |
|
|
|
os.makedirs(feat_dir, exist_ok=True) |
|
if op.exists(feat_path): |
|
os.remove(feat_path) |
|
|
|
feat_f = NpyAppendArray(feat_path) |
|
with open(leng_path, "w") as leng_f: |
|
for path in tqdm.tqdm(iterator, total=num): |
|
feat = reader.get_feats(path) |
|
feat_f.append(feat.cpu().numpy()) |
|
leng_f.write(f"{len(feat)}\n") |
|
logger.info("finished successfully") |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("root") |
|
parser.add_argument("tsv_path") |
|
parser.add_argument("ckpt_path") |
|
parser.add_argument("layer", type=int) |
|
parser.add_argument("nshard", type=int) |
|
parser.add_argument("rank", type=int) |
|
parser.add_argument("feat_dir") |
|
parser.add_argument("feat_name") |
|
parser.add_argument("--max_chunk", type=int, default=1600000) |
|
args = parser.parse_args() |
|
logger.info(args) |
|
|
|
dump_feature(**vars(args)) |
|
|