|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
|
|
import torch.nn.functional as F |
|
from fairseq import metrics, utils |
|
from fairseq.criterions import FairseqCriterion, register_criterion |
|
from fairseq.dataclass import FairseqDataclass |
|
from omegaconf import II |
|
|
|
|
|
@dataclass |
|
class CrossEntropyCriterionConfig(FairseqDataclass): |
|
sentence_avg: bool = II("optimization.sentence_avg") |
|
|
|
|
|
@register_criterion("cross_entropy", dataclass=CrossEntropyCriterionConfig) |
|
class CrossEntropyCriterion(FairseqCriterion): |
|
def __init__(self, task, sentence_avg): |
|
super().__init__(task) |
|
self.sentence_avg = sentence_avg |
|
|
|
def forward(self, model, sample, reduce=True): |
|
"""Compute the loss for the given sample. |
|
|
|
Returns a tuple with three elements: |
|
1) the loss |
|
2) the sample size, which is used as the denominator for the gradient |
|
3) logging outputs to display while training |
|
""" |
|
net_output = model(**sample["net_input"]) |
|
loss, _ = self.compute_loss(model, net_output, sample, reduce=reduce) |
|
sample_size = ( |
|
sample["target"].size(0) if self.sentence_avg else sample["ntokens"] |
|
) |
|
logging_output = { |
|
"loss": loss.data, |
|
"ntokens": sample["ntokens"], |
|
"nsentences": sample["target"].size(0), |
|
"sample_size": sample_size, |
|
} |
|
return loss, sample_size, logging_output |
|
|
|
def compute_loss(self, model, net_output, sample, reduce=True): |
|
lprobs = model.get_normalized_probs(net_output, log_probs=True) |
|
lprobs = lprobs.view(-1, lprobs.size(-1)) |
|
target = model.get_targets(sample, net_output).view(-1) |
|
loss = F.nll_loss( |
|
lprobs, |
|
target, |
|
ignore_index=self.padding_idx, |
|
reduction="sum" if reduce else "none", |
|
) |
|
return loss, loss |
|
|
|
@staticmethod |
|
def reduce_metrics(logging_outputs) -> None: |
|
"""Aggregate logging outputs from data parallel training.""" |
|
loss_sum = sum(log.get("loss", 0) for log in logging_outputs) |
|
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) |
|
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) |
|
|
|
|
|
metrics.log_scalar( |
|
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3 |
|
) |
|
if sample_size != ntokens: |
|
metrics.log_scalar( |
|
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 |
|
) |
|
metrics.log_derived( |
|
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) |
|
) |
|
else: |
|
metrics.log_derived( |
|
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) |
|
) |
|
|
|
@staticmethod |
|
def logging_outputs_can_be_summed() -> bool: |
|
""" |
|
Whether the logging outputs returned by `forward` can be summed |
|
across workers prior to calling `reduce_metrics`. Setting this |
|
to True will improves distributed training speed. |
|
""" |
|
return True |
|
|