|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass, field |
|
|
|
import torch |
|
from fairseq import metrics, utils |
|
from fairseq.criterions import FairseqCriterion, register_criterion |
|
from fairseq.dataclass import FairseqDataclass |
|
from omegaconf import II |
|
|
|
|
|
@dataclass |
|
class LabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass): |
|
label_smoothing: float = field( |
|
default=0.0, |
|
metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, |
|
) |
|
report_accuracy: bool = field( |
|
default=False, |
|
metadata={"help": "report accuracy metric"}, |
|
) |
|
ignore_prefix_size: int = field( |
|
default=0, |
|
metadata={"help": "Ignore first N tokens"}, |
|
) |
|
sentence_avg: bool = II("optimization.sentence_avg") |
|
|
|
|
|
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True): |
|
if target.dim() == lprobs.dim() - 1: |
|
target = target.unsqueeze(-1) |
|
nll_loss = -lprobs.gather(dim=-1, index=target) |
|
smooth_loss = -lprobs.sum(dim=-1, keepdim=True) |
|
if ignore_index is not None: |
|
pad_mask = target.eq(ignore_index) |
|
nll_loss.masked_fill_(pad_mask, 0.0) |
|
smooth_loss.masked_fill_(pad_mask, 0.0) |
|
else: |
|
nll_loss = nll_loss.squeeze(-1) |
|
smooth_loss = smooth_loss.squeeze(-1) |
|
if reduce: |
|
nll_loss = nll_loss.sum() |
|
smooth_loss = smooth_loss.sum() |
|
eps_i = epsilon / (lprobs.size(-1) - 1) |
|
loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss |
|
return loss, nll_loss |
|
|
|
|
|
@register_criterion( |
|
"label_smoothed_cross_entropy", dataclass=LabelSmoothedCrossEntropyCriterionConfig |
|
) |
|
class LabelSmoothedCrossEntropyCriterion(FairseqCriterion): |
|
def __init__( |
|
self, |
|
task, |
|
sentence_avg, |
|
label_smoothing, |
|
ignore_prefix_size=0, |
|
report_accuracy=False, |
|
): |
|
super().__init__(task) |
|
self.sentence_avg = sentence_avg |
|
self.eps = label_smoothing |
|
self.ignore_prefix_size = ignore_prefix_size |
|
self.report_accuracy = report_accuracy |
|
|
|
def forward(self, model, sample, reduce=True): |
|
"""Compute the loss for the given sample. |
|
|
|
Returns a tuple with three elements: |
|
1) the loss |
|
2) the sample size, which is used as the denominator for the gradient |
|
3) logging outputs to display while training |
|
""" |
|
net_output = model(**sample["net_input"]) |
|
loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce) |
|
sample_size = ( |
|
sample["target"].size(0) if self.sentence_avg else sample["ntokens"] |
|
) |
|
logging_output = { |
|
"loss": loss.data, |
|
"nll_loss": nll_loss.data, |
|
"ntokens": sample["ntokens"], |
|
"nsentences": sample["target"].size(0), |
|
"sample_size": sample_size, |
|
} |
|
if self.report_accuracy: |
|
n_correct, total = self.compute_accuracy(model, net_output, sample) |
|
logging_output["n_correct"] = utils.item(n_correct.data) |
|
logging_output["total"] = utils.item(total.data) |
|
return loss, sample_size, logging_output |
|
|
|
def get_lprobs_and_target(self, model, net_output, sample): |
|
lprobs = model.get_normalized_probs(net_output, log_probs=True) |
|
target = model.get_targets(sample, net_output) |
|
if self.ignore_prefix_size > 0: |
|
if getattr(lprobs, "batch_first", False): |
|
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() |
|
target = target[:, self.ignore_prefix_size :].contiguous() |
|
else: |
|
lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous() |
|
target = target[self.ignore_prefix_size :, :].contiguous() |
|
return lprobs.view(-1, lprobs.size(-1)), target.view(-1) |
|
|
|
def compute_loss(self, model, net_output, sample, reduce=True): |
|
lprobs, target = self.get_lprobs_and_target(model, net_output, sample) |
|
loss, nll_loss = label_smoothed_nll_loss( |
|
lprobs, |
|
target, |
|
self.eps, |
|
ignore_index=self.padding_idx, |
|
reduce=reduce, |
|
) |
|
return loss, nll_loss |
|
|
|
def compute_accuracy(self, model, net_output, sample): |
|
lprobs, target = self.get_lprobs_and_target(model, net_output, sample) |
|
mask = target.ne(self.padding_idx) |
|
n_correct = torch.sum( |
|
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) |
|
) |
|
total = torch.sum(mask) |
|
return n_correct, total |
|
|
|
@classmethod |
|
def reduce_metrics(cls, logging_outputs) -> None: |
|
"""Aggregate logging outputs from data parallel training.""" |
|
loss_sum = sum(log.get("loss", 0) for log in logging_outputs) |
|
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) |
|
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) |
|
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) |
|
|
|
metrics.log_scalar( |
|
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3 |
|
) |
|
metrics.log_scalar( |
|
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 |
|
) |
|
metrics.log_derived( |
|
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) |
|
) |
|
|
|
total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) |
|
if total > 0: |
|
metrics.log_scalar("total", total) |
|
n_correct = utils.item( |
|
sum(log.get("n_correct", 0) for log in logging_outputs) |
|
) |
|
metrics.log_scalar("n_correct", n_correct) |
|
metrics.log_derived( |
|
"accuracy", |
|
lambda meters: round( |
|
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3 |
|
) |
|
if meters["total"].sum > 0 |
|
else float("nan"), |
|
) |
|
|
|
@staticmethod |
|
def logging_outputs_can_be_summed() -> bool: |
|
""" |
|
Whether the logging outputs returned by `forward` can be summed |
|
across workers prior to calling `reduce_metrics`. Setting this |
|
to True will improves distributed training speed. |
|
""" |
|
return True |
|
|