|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from fairseq import metrics, utils |
|
from fairseq.criterions import FairseqCriterion, register_criterion |
|
from torch import Tensor |
|
|
|
|
|
@register_criterion("nat_loss") |
|
class LabelSmoothedDualImitationCriterion(FairseqCriterion): |
|
def __init__(self, task, label_smoothing): |
|
super().__init__(task) |
|
self.label_smoothing = label_smoothing |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
"""Add criterion-specific arguments to the parser.""" |
|
parser.add_argument( |
|
"--label-smoothing", |
|
default=0.0, |
|
type=float, |
|
metavar="D", |
|
help="epsilon for label smoothing, 0 means no label smoothing", |
|
) |
|
|
|
def _compute_loss( |
|
self, outputs, targets, masks=None, label_smoothing=0.0, name="loss", factor=1.0 |
|
): |
|
""" |
|
outputs: batch x len x d_model |
|
targets: batch x len |
|
masks: batch x len |
|
|
|
policy_logprob: if there is some policy |
|
depends on the likelihood score as rewards. |
|
""" |
|
|
|
def mean_ds(x: Tensor, dim=None) -> Tensor: |
|
return ( |
|
x.float().mean().type_as(x) |
|
if dim is None |
|
else x.float().mean(dim).type_as(x) |
|
) |
|
|
|
if masks is not None: |
|
outputs, targets = outputs[masks], targets[masks] |
|
|
|
if masks is not None and not masks.any(): |
|
nll_loss = torch.tensor(0) |
|
loss = nll_loss |
|
else: |
|
logits = F.log_softmax(outputs, dim=-1) |
|
if targets.dim() == 1: |
|
losses = F.nll_loss(logits, targets.to(logits.device), reduction="none") |
|
|
|
else: |
|
losses = F.kl_div(logits, targets.to(logits.device), reduction="none") |
|
losses = losses.sum(-1) |
|
|
|
nll_loss = mean_ds(losses) |
|
if label_smoothing > 0: |
|
loss = ( |
|
nll_loss * (1 - label_smoothing) - mean_ds(logits) * label_smoothing |
|
) |
|
else: |
|
loss = nll_loss |
|
|
|
loss = loss * factor |
|
return {"name": name, "loss": loss, "nll_loss": nll_loss, "factor": factor} |
|
|
|
def _custom_loss(self, loss, name="loss", factor=1.0): |
|
return {"name": name, "loss": loss, "factor": factor} |
|
|
|
def forward(self, model, sample, reduce=True): |
|
"""Compute the loss for the given sample. |
|
Returns a tuple with three elements: |
|
1) the loss |
|
2) the sample size, which is used as the denominator for the gradient |
|
3) logging outputs to display while training |
|
""" |
|
nsentences, ntokens = sample["nsentences"], sample["ntokens"] |
|
|
|
|
|
src_tokens, src_lengths = ( |
|
sample["net_input"]["src_tokens"], |
|
sample["net_input"]["src_lengths"], |
|
) |
|
tgt_tokens, prev_output_tokens = sample["target"], sample["prev_target"] |
|
|
|
outputs = model(src_tokens, src_lengths, prev_output_tokens, tgt_tokens) |
|
losses, nll_loss = [], [] |
|
|
|
for obj in outputs: |
|
if outputs[obj].get("loss", None) is None: |
|
_losses = self._compute_loss( |
|
outputs[obj].get("out"), |
|
outputs[obj].get("tgt"), |
|
outputs[obj].get("mask", None), |
|
outputs[obj].get("ls", 0.0), |
|
name=obj + "-loss", |
|
factor=outputs[obj].get("factor", 1.0), |
|
) |
|
else: |
|
_losses = self._custom_loss( |
|
outputs[obj].get("loss"), |
|
name=obj + "-loss", |
|
factor=outputs[obj].get("factor", 1.0), |
|
) |
|
|
|
losses += [_losses] |
|
if outputs[obj].get("nll_loss", False): |
|
nll_loss += [_losses.get("nll_loss", 0.0)] |
|
|
|
loss = sum(l["loss"] for l in losses) |
|
nll_loss = sum(l for l in nll_loss) if len(nll_loss) > 0 else loss.new_tensor(0) |
|
|
|
|
|
|
|
|
|
sample_size = 1 |
|
logging_output = { |
|
"loss": loss.data, |
|
"nll_loss": nll_loss.data, |
|
"ntokens": ntokens, |
|
"nsentences": nsentences, |
|
"sample_size": sample_size, |
|
} |
|
|
|
for l in losses: |
|
logging_output[l["name"]] = ( |
|
utils.item(l["loss"].data / l["factor"]) |
|
if reduce |
|
else l[["loss"]].data / l["factor"] |
|
) |
|
|
|
return loss, sample_size, logging_output |
|
|
|
@staticmethod |
|
def reduce_metrics(logging_outputs) -> None: |
|
"""Aggregate logging outputs from data parallel training.""" |
|
sample_size = utils.item( |
|
sum(log.get("sample_size", 0) for log in logging_outputs) |
|
) |
|
loss = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) |
|
nll_loss = utils.item(sum(log.get("nll_loss", 0) for log in logging_outputs)) |
|
|
|
metrics.log_scalar( |
|
"loss", loss / sample_size / math.log(2), sample_size, round=3 |
|
) |
|
metrics.log_scalar( |
|
"nll_loss", nll_loss / sample_size / math.log(2), sample_size, round=3 |
|
) |
|
metrics.log_derived( |
|
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) |
|
) |
|
|
|
for key in logging_outputs[0]: |
|
if key[-5:] == "-loss": |
|
val = sum(log.get(key, 0) for log in logging_outputs) |
|
metrics.log_scalar( |
|
key[:-5], |
|
val / sample_size / math.log(2) if sample_size > 0 else 0.0, |
|
sample_size, |
|
round=3, |
|
) |
|
|
|
@staticmethod |
|
def logging_outputs_can_be_summed() -> bool: |
|
""" |
|
Whether the logging outputs returned by `forward` can be summed |
|
across workers prior to calling `reduce_metrics`. Setting this |
|
to True will improves distributed training speed. |
|
""" |
|
return True |
|
|