|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from fairseq import utils |
|
from fairseq.incremental_decoding_utils import with_incremental_state |
|
from fairseq.modules.fairseq_dropout import FairseqDropout |
|
from torch import Tensor, nn |
|
|
|
|
|
try: |
|
from fairseq.model_parallel.megatron.mpu import ( |
|
get_cuda_rng_tracker, |
|
get_model_parallel_world_size, |
|
ColumnParallelLinear, |
|
RowParallelLinear, |
|
) |
|
|
|
has_megatron_submodule = True |
|
except (ImportError, ModuleNotFoundError): |
|
has_megatron_submodule = False |
|
|
|
|
|
@with_incremental_state |
|
class ModelParallelMultiheadAttention(nn.Module): |
|
"""Model parallel Multi-headed attention. |
|
This performs the Multi-headed attention over multiple gpus. |
|
|
|
See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
kdim=None, |
|
vdim=None, |
|
dropout=0.0, |
|
bias=True, |
|
self_attention=False, |
|
encoder_decoder_attention=False, |
|
): |
|
super().__init__() |
|
if not has_megatron_submodule: |
|
raise ImportError( |
|
"\n\nPlease install the megatron submodule:" |
|
"\n\n git submodule update --init " |
|
"fairseq/model_parallel/megatron" |
|
) |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim |
|
|
|
self.model_parallel_size = get_model_parallel_world_size() |
|
|
|
self.num_heads_partition = num_heads // self.model_parallel_size |
|
assert ( |
|
self.num_heads_partition * self.model_parallel_size == num_heads |
|
), "Number of heads must be divisible by model parallel size" |
|
|
|
self.dropout_module = FairseqDropout( |
|
dropout, module_name=self.__class__.__name__ |
|
) |
|
self.head_dim = embed_dim // num_heads |
|
assert ( |
|
self.head_dim * num_heads == self.embed_dim |
|
), "embed_dim must be divisible by num_heads" |
|
self.scaling = self.head_dim ** -0.5 |
|
|
|
self.self_attention = self_attention |
|
self.encoder_decoder_attention = encoder_decoder_attention |
|
|
|
assert ( |
|
not self.self_attention or self.qkv_same_dim |
|
), "Self-attention requires query, key and value to be of the same size" |
|
|
|
self.k_proj = ColumnParallelLinear( |
|
self.kdim, embed_dim, bias=bias, gather_output=False |
|
) |
|
self.v_proj = ColumnParallelLinear( |
|
self.vdim, embed_dim, bias=bias, gather_output=False |
|
) |
|
self.q_proj = ColumnParallelLinear( |
|
embed_dim, embed_dim, bias=bias, gather_output=False |
|
) |
|
self.out_proj = RowParallelLinear( |
|
embed_dim, embed_dim, bias=bias, input_is_parallel=True |
|
) |
|
|
|
def forward( |
|
self, |
|
query, |
|
key: Optional[Tensor], |
|
value: Optional[Tensor], |
|
key_padding_mask: Optional[Tensor] = None, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
static_kv: bool = False, |
|
attn_mask: Optional[Tensor] = None, |
|
**unused_kwargs, |
|
) -> Tuple[Tensor, Optional[Tensor]]: |
|
"""Input shape: Time x Batch x Channel |
|
|
|
Args: |
|
key_padding_mask (ByteTensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where |
|
padding elements are indicated by 1s. |
|
attn_mask (ByteTensor, optional): typically used to |
|
implement causal attention, where the mask prevents the |
|
attention from looking forward in time (default: None). |
|
""" |
|
tgt_len, bsz, embed_dim = query.size() |
|
assert embed_dim == self.embed_dim |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
|
|
is_tpu = query.device.type == "xla" |
|
|
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if saved_state is not None and "prev_key" in saved_state: |
|
|
|
|
|
if static_kv: |
|
assert self.encoder_decoder_attention and not self.self_attention |
|
key = value = None |
|
else: |
|
saved_state = None |
|
|
|
if self.self_attention: |
|
q = self.q_proj(query) |
|
k = self.k_proj(query) |
|
v = self.v_proj(query) |
|
elif self.encoder_decoder_attention: |
|
|
|
q = self.q_proj(query) |
|
if key is None: |
|
assert value is None |
|
k = v = None |
|
else: |
|
k = self.k_proj(key) |
|
v = self.v_proj(key) |
|
|
|
else: |
|
assert key is not None and value is not None |
|
q = self.q_proj(query) |
|
k = self.k_proj(key) |
|
v = self.v_proj(value) |
|
q *= self.scaling |
|
|
|
q = ( |
|
q.contiguous() |
|
.view(tgt_len, bsz * self.num_heads_partition, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
if k is not None: |
|
k = ( |
|
k.contiguous() |
|
.view(-1, bsz * self.num_heads_partition, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
if v is not None: |
|
v = ( |
|
v.contiguous() |
|
.view(-1, bsz * self.num_heads_partition, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
|
|
if saved_state is not None: |
|
|
|
if "prev_key" in saved_state: |
|
_prev_key = saved_state["prev_key"] |
|
assert _prev_key is not None |
|
prev_key = _prev_key.view( |
|
bsz * self.num_heads_partition, -1, self.head_dim |
|
) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
assert k is not None |
|
k = torch.cat([prev_key, k], dim=1) |
|
if "prev_value" in saved_state: |
|
_prev_value = saved_state["prev_value"] |
|
assert _prev_value is not None |
|
prev_value = _prev_value.view( |
|
bsz * self.num_heads_partition, -1, self.head_dim |
|
) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
assert v is not None |
|
v = torch.cat([prev_value, v], dim=1) |
|
prev_key_padding_mask: Optional[Tensor] = None |
|
if "prev_key_padding_mask" in saved_state: |
|
prev_key_padding_mask = saved_state["prev_key_padding_mask"] |
|
assert k is not None and v is not None |
|
key_padding_mask = ( |
|
ModelParallelMultiheadAttention._append_prev_key_padding_mask( |
|
key_padding_mask=key_padding_mask, |
|
prev_key_padding_mask=prev_key_padding_mask, |
|
batch_size=bsz, |
|
src_len=k.size(1), |
|
static_kv=static_kv, |
|
) |
|
) |
|
|
|
saved_state["prev_key"] = k.view( |
|
bsz, self.num_heads_partition, -1, self.head_dim |
|
) |
|
saved_state["prev_value"] = v.view( |
|
bsz, self.num_heads_partition, -1, self.head_dim |
|
) |
|
saved_state["prev_key_padding_mask"] = key_padding_mask |
|
|
|
assert incremental_state is not None |
|
incremental_state = self._set_input_buffer(incremental_state, saved_state) |
|
assert k is not None |
|
src_len = k.size(1) |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dim() == 0: |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
|
|
assert list(attn_weights.size()) == [ |
|
bsz * self.num_heads_partition, |
|
tgt_len, |
|
src_len, |
|
] |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
attn_weights += attn_mask |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view( |
|
bsz, self.num_heads_partition, tgt_len, src_len |
|
) |
|
if not is_tpu: |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), |
|
float("-inf"), |
|
) |
|
else: |
|
attn_weights = attn_weights.transpose(0, 2) |
|
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) |
|
attn_weights = attn_weights.transpose(0, 2) |
|
attn_weights = attn_weights.view( |
|
bsz * self.num_heads_partition, tgt_len, src_len |
|
) |
|
|
|
attn_weights_float = utils.softmax(attn_weights, dim=-1) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
|
|
with get_cuda_rng_tracker().fork(): |
|
attn_probs = self.dropout_module(attn_weights) |
|
|
|
assert v is not None |
|
attn = torch.bmm(attn_probs, v) |
|
assert list(attn.size()) == [ |
|
bsz * self.num_heads_partition, |
|
tgt_len, |
|
self.head_dim, |
|
] |
|
embed_dim_partition = embed_dim // self.model_parallel_size |
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim_partition) |
|
attn = self.out_proj(attn) |
|
|
|
|
|
attn_weights: Optional[Tensor] = None |
|
|
|
return attn, attn_weights |
|
|
|
@staticmethod |
|
def _append_prev_key_padding_mask( |
|
key_padding_mask: Optional[Tensor], |
|
prev_key_padding_mask: Optional[Tensor], |
|
batch_size: int, |
|
src_len: int, |
|
static_kv: bool, |
|
) -> Optional[Tensor]: |
|
|
|
if prev_key_padding_mask is not None and static_kv: |
|
new_key_padding_mask = prev_key_padding_mask |
|
elif prev_key_padding_mask is not None and key_padding_mask is not None: |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 |
|
) |
|
|
|
|
|
|
|
elif prev_key_padding_mask is not None: |
|
|
|
filler = torch.zeros(batch_size, src_len - prev_key_padding_mask.size(1)) |
|
if prev_key_padding_mask.is_cuda: |
|
filler = filler.cuda() |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), filler.float()], dim=1 |
|
) |
|
elif key_padding_mask is not None: |
|
filler = torch.zeros(batch_size, src_len - key_padding_mask.size(1)) |
|
if key_padding_mask.is_cuda: |
|
filler = filler.cuda() |
|
new_key_padding_mask = torch.cat( |
|
[filler.float(), key_padding_mask.float()], dim=1 |
|
) |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask |
|
return new_key_padding_mask |
|
|
|
def reorder_incremental_state( |
|
self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order |
|
): |
|
"""Reorder buffered internal state (for incremental generation).""" |
|
input_buffer = self._get_input_buffer(incremental_state) |
|
if input_buffer is not None: |
|
for k in input_buffer.keys(): |
|
if input_buffer[k] is not None: |
|
input_buffer[k] = input_buffer[k].index_select(0, new_order) |
|
incremental_state = self._set_input_buffer(incremental_state, input_buffer) |
|
return incremental_state |
|
|
|
def _get_input_buffer( |
|
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] |
|
) -> Dict[str, Optional[Tensor]]: |
|
result = self.get_incremental_state(incremental_state, "attn_state") |
|
if result is not None: |
|
return result |
|
else: |
|
empty_result: Dict[str, Optional[Tensor]] = {} |
|
return empty_result |
|
|
|
def _set_input_buffer( |
|
self, |
|
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], |
|
buffer: Dict[str, Optional[Tensor]], |
|
): |
|
return self.set_incremental_state(incremental_state, "attn_state", buffer) |
|
|