|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from fairseq import utils |
|
from fairseq.distributed import fsdp_wrap |
|
from fairseq.models import ( |
|
FairseqEncoder, |
|
FairseqEncoderDecoderModel, |
|
FairseqIncrementalDecoder, |
|
register_model, |
|
register_model_architecture, |
|
) |
|
from fairseq.modules import ( |
|
AdaptiveSoftmax, |
|
BaseLayer, |
|
FairseqDropout, |
|
LayerDropModuleList, |
|
LayerNorm, |
|
PositionalEmbedding, |
|
SinusoidalPositionalEmbedding, |
|
TransformerDecoderLayer, |
|
TransformerEncoderLayer, |
|
) |
|
from fairseq.modules.checkpoint_activations import checkpoint_wrapper |
|
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ |
|
from torch import Tensor |
|
|
|
|
|
DEFAULT_MAX_SOURCE_POSITIONS = 1024 |
|
DEFAULT_MAX_TARGET_POSITIONS = 1024 |
|
|
|
|
|
DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) |
|
|
|
|
|
@register_model("transformer") |
|
class TransformerModel(FairseqEncoderDecoderModel): |
|
""" |
|
Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) |
|
<https://arxiv.org/abs/1706.03762>`_. |
|
|
|
Args: |
|
encoder (TransformerEncoder): the encoder |
|
decoder (TransformerDecoder): the decoder |
|
|
|
The Transformer model provides the following named architectures and |
|
command-line arguments: |
|
|
|
.. argparse:: |
|
:ref: fairseq.models.transformer_parser |
|
:prog: |
|
""" |
|
|
|
@classmethod |
|
def hub_models(cls): |
|
|
|
|
|
def moses_subword(path): |
|
return { |
|
'path': path, |
|
'tokenizer': 'moses', |
|
'bpe': 'subword_nmt', |
|
} |
|
|
|
def moses_fastbpe(path): |
|
return { |
|
'path': path, |
|
'tokenizer': 'moses', |
|
'bpe': 'fastbpe', |
|
} |
|
|
|
def spm(path): |
|
return { |
|
'path': path, |
|
'bpe': 'sentencepiece', |
|
'tokenizer': 'space', |
|
} |
|
|
|
return { |
|
'transformer.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'), |
|
'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2', |
|
'transformer.wmt18.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'), |
|
'transformer.wmt19.en-de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'), |
|
'transformer.wmt19.en-ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'), |
|
'transformer.wmt19.de-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'), |
|
'transformer.wmt19.ru-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'), |
|
'transformer.wmt19.en-de.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'), |
|
'transformer.wmt19.en-ru.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'), |
|
'transformer.wmt19.de-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'), |
|
'transformer.wmt19.ru-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'), |
|
'transformer.wmt20.en-ta': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-ta.single.tar.gz'), |
|
'transformer.wmt20.en-iu.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.news.single.tar.gz'), |
|
'transformer.wmt20.en-iu.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.nh.single.tar.gz'), |
|
'transformer.wmt20.ta-en': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.ta-en.single.tar.gz'), |
|
'transformer.wmt20.iu-en.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.news.single.tar.gz'), |
|
'transformer.wmt20.iu-en.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.nh.single.tar.gz'), |
|
'transformer.flores101.mm100.615M': spm('https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz'), |
|
'transformer.flores101.mm100.175M': spm('https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_175M.tar.gz'), |
|
} |
|
|
|
|
|
def __init__(self, args, encoder, decoder): |
|
super().__init__(encoder, decoder) |
|
self.args = args |
|
self.supports_align_args = True |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
"""Add model-specific arguments to the parser.""" |
|
|
|
parser.add_argument('--activation-fn', |
|
choices=utils.get_available_activation_fns(), |
|
help='activation function to use') |
|
parser.add_argument('--dropout', type=float, metavar='D', |
|
help='dropout probability') |
|
parser.add_argument('--attention-dropout', type=float, metavar='D', |
|
help='dropout probability for attention weights') |
|
parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', |
|
help='dropout probability after activation in FFN.') |
|
parser.add_argument('--encoder-embed-path', type=str, metavar='STR', |
|
help='path to pre-trained encoder embedding') |
|
parser.add_argument('--encoder-embed-dim', type=int, metavar='N', |
|
help='encoder embedding dimension') |
|
parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', |
|
help='encoder embedding dimension for FFN') |
|
parser.add_argument('--encoder-layers', type=int, metavar='N', |
|
help='num encoder layers') |
|
parser.add_argument('--encoder-attention-heads', type=int, metavar='N', |
|
help='num encoder attention heads') |
|
parser.add_argument('--encoder-normalize-before', action='store_true', |
|
help='apply layernorm before each encoder block') |
|
parser.add_argument('--encoder-learned-pos', action='store_true', |
|
help='use learned positional embeddings in the encoder') |
|
parser.add_argument('--decoder-embed-path', type=str, metavar='STR', |
|
help='path to pre-trained decoder embedding') |
|
parser.add_argument('--decoder-embed-dim', type=int, metavar='N', |
|
help='decoder embedding dimension') |
|
parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', |
|
help='decoder embedding dimension for FFN') |
|
parser.add_argument('--decoder-layers', type=int, metavar='N', |
|
help='num decoder layers') |
|
parser.add_argument('--decoder-attention-heads', type=int, metavar='N', |
|
help='num decoder attention heads') |
|
parser.add_argument('--decoder-learned-pos', action='store_true', |
|
help='use learned positional embeddings in the decoder') |
|
parser.add_argument('--decoder-normalize-before', action='store_true', |
|
help='apply layernorm before each decoder block') |
|
parser.add_argument('--decoder-output-dim', type=int, metavar='N', |
|
help='decoder output dimension (extra linear layer ' |
|
'if different from decoder embed dim') |
|
parser.add_argument('--share-decoder-input-output-embed', action='store_true', |
|
help='share decoder input and output embeddings') |
|
parser.add_argument('--share-all-embeddings', action='store_true', |
|
help='share encoder, decoder and output embeddings' |
|
' (requires shared dictionary and embed dim)') |
|
parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', |
|
help='if set, disables positional embeddings (outside self attention)') |
|
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', |
|
help='comma separated list of adaptive softmax cutoff points. ' |
|
'Must be used with adaptive_loss criterion'), |
|
parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', |
|
help='sets adaptive softmax dropout for the tail projections') |
|
parser.add_argument('--layernorm-embedding', action='store_true', |
|
help='add layernorm to embedding') |
|
parser.add_argument('--no-scale-embedding', action='store_true', |
|
help='if True, dont scale embeddings') |
|
parser.add_argument('--checkpoint-activations', action='store_true', |
|
help='checkpoint activations at each layer, which saves GPU ' |
|
'memory usage at the cost of some additional compute') |
|
parser.add_argument('--offload-activations', action='store_true', |
|
help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.') |
|
|
|
parser.add_argument('--no-cross-attention', default=False, action='store_true', |
|
help='do not perform cross-attention') |
|
parser.add_argument('--cross-self-attention', default=False, action='store_true', |
|
help='perform cross+self-attention') |
|
|
|
parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, |
|
help='LayerDrop probability for encoder') |
|
parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, |
|
help='LayerDrop probability for decoder') |
|
parser.add_argument('--encoder-layers-to-keep', default=None, |
|
help='which layers to *keep* when pruning as a comma-separated list') |
|
parser.add_argument('--decoder-layers-to-keep', default=None, |
|
help='which layers to *keep* when pruning as a comma-separated list') |
|
|
|
parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, |
|
help='iterative PQ quantization noise at training time') |
|
parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, |
|
help='block size of quantization noise at training time') |
|
parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, |
|
help='scalar quantization noise and scalar quantization at training time') |
|
|
|
parser.add_argument( |
|
'--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP, |
|
help=( |
|
'minimum number of params for a layer to be wrapped with FSDP() when ' |
|
'training with --ddp-backend=fully_sharded. Smaller values will ' |
|
'improve memory efficiency, but may make torch.distributed ' |
|
'communication less efficient due to smaller input sizes. This option ' |
|
'is set to 0 (i.e., always wrap) when --checkpoint-activations or ' |
|
'--offload-activations are passed.' |
|
) |
|
) |
|
|
|
|
|
@classmethod |
|
def build_model(cls, args, task): |
|
"""Build a new model instance.""" |
|
|
|
|
|
base_architecture(args) |
|
|
|
if args.encoder_layers_to_keep: |
|
args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) |
|
if args.decoder_layers_to_keep: |
|
args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) |
|
|
|
if getattr(args, "max_source_positions", None) is None: |
|
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS |
|
if getattr(args, "max_target_positions", None) is None: |
|
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS |
|
|
|
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary |
|
|
|
if args.share_all_embeddings: |
|
if src_dict != tgt_dict: |
|
raise ValueError("--share-all-embeddings requires a joined dictionary") |
|
if args.encoder_embed_dim != args.decoder_embed_dim: |
|
raise ValueError( |
|
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" |
|
) |
|
if args.decoder_embed_path and ( |
|
args.decoder_embed_path != args.encoder_embed_path |
|
): |
|
raise ValueError( |
|
"--share-all-embeddings not compatible with --decoder-embed-path" |
|
) |
|
encoder_embed_tokens = cls.build_embedding( |
|
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path |
|
) |
|
decoder_embed_tokens = encoder_embed_tokens |
|
args.share_decoder_input_output_embed = True |
|
else: |
|
encoder_embed_tokens = cls.build_embedding( |
|
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path |
|
) |
|
decoder_embed_tokens = cls.build_embedding( |
|
args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path |
|
) |
|
if getattr(args, "offload_activations", False): |
|
args.checkpoint_activations = True |
|
encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) |
|
decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) |
|
if not args.share_all_embeddings: |
|
min_params_to_wrap = getattr( |
|
args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP |
|
) |
|
|
|
encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap) |
|
decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap) |
|
return cls(args, encoder, decoder) |
|
|
|
@classmethod |
|
def build_embedding(cls, args, dictionary, embed_dim, path=None): |
|
num_embeddings = len(dictionary) |
|
padding_idx = dictionary.pad() |
|
|
|
emb = Embedding(num_embeddings, embed_dim, padding_idx) |
|
|
|
if path: |
|
embed_dict = utils.parse_embedding(path) |
|
utils.load_embedding(embed_dict, dictionary, emb) |
|
return emb |
|
|
|
@classmethod |
|
def build_encoder(cls, args, src_dict, embed_tokens): |
|
return TransformerEncoder(args, src_dict, embed_tokens) |
|
|
|
@classmethod |
|
def build_decoder(cls, args, tgt_dict, embed_tokens): |
|
return TransformerDecoder( |
|
args, |
|
tgt_dict, |
|
embed_tokens, |
|
no_encoder_attn=getattr(args, "no_cross_attention", False), |
|
) |
|
|
|
|
|
|
|
def forward( |
|
self, |
|
src_tokens, |
|
src_lengths, |
|
prev_output_tokens, |
|
return_all_hiddens: bool = True, |
|
features_only: bool = False, |
|
alignment_layer: Optional[int] = None, |
|
alignment_heads: Optional[int] = None, |
|
): |
|
""" |
|
Run the forward pass for an encoder-decoder model. |
|
|
|
Copied from the base class, but without ``**kwargs``, |
|
which are not supported by TorchScript. |
|
""" |
|
encoder_out = self.encoder( |
|
src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens |
|
) |
|
decoder_out = self.decoder( |
|
prev_output_tokens, |
|
encoder_out=encoder_out, |
|
features_only=features_only, |
|
alignment_layer=alignment_layer, |
|
alignment_heads=alignment_heads, |
|
src_lengths=src_lengths, |
|
return_all_hiddens=return_all_hiddens, |
|
) |
|
return decoder_out |
|
|
|
|
|
|
|
|
|
@torch.jit.export |
|
def get_normalized_probs( |
|
self, |
|
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], |
|
log_probs: bool, |
|
sample: Optional[Dict[str, Tensor]] = None, |
|
): |
|
"""Get normalized probabilities (or log probs) from a net's output.""" |
|
return self.get_normalized_probs_scriptable(net_output, log_probs, sample) |
|
|
|
|
|
class TransformerEncoder(FairseqEncoder): |
|
""" |
|
Transformer encoder consisting of *args.encoder_layers* layers. Each layer |
|
is a :class:`TransformerEncoderLayer`. |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
dictionary (~fairseq.data.Dictionary): encoding dictionary |
|
embed_tokens (torch.nn.Embedding): input embedding |
|
""" |
|
|
|
def __init__(self, args, dictionary, embed_tokens): |
|
self.args = args |
|
super().__init__(dictionary) |
|
self.register_buffer("version", torch.Tensor([3])) |
|
|
|
self.dropout_module = FairseqDropout( |
|
args.dropout, module_name=self.__class__.__name__ |
|
) |
|
self.encoder_layerdrop = args.encoder_layerdrop |
|
|
|
embed_dim = embed_tokens.embedding_dim |
|
self.padding_idx = embed_tokens.padding_idx |
|
self.max_source_positions = args.max_source_positions |
|
|
|
self.embed_tokens = embed_tokens |
|
|
|
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) |
|
|
|
self.embed_positions = ( |
|
PositionalEmbedding( |
|
args.max_source_positions, |
|
embed_dim, |
|
self.padding_idx, |
|
learned=args.encoder_learned_pos, |
|
) |
|
if not args.no_token_positional_embeddings |
|
else None |
|
) |
|
export = getattr(args, "export", False) |
|
if getattr(args, "layernorm_embedding", False): |
|
self.layernorm_embedding = LayerNorm(embed_dim, export=export) |
|
else: |
|
self.layernorm_embedding = None |
|
|
|
if not args.adaptive_input and args.quant_noise_pq > 0: |
|
self.quant_noise = apply_quant_noise_( |
|
nn.Linear(embed_dim, embed_dim, bias=False), |
|
args.quant_noise_pq, |
|
args.quant_noise_pq_block_size, |
|
) |
|
else: |
|
self.quant_noise = None |
|
|
|
if self.encoder_layerdrop > 0.0: |
|
self.layers = LayerDropModuleList(p=self.encoder_layerdrop) |
|
else: |
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend( |
|
[self.build_encoder_layer(args) for i in range(args.encoder_layers)] |
|
) |
|
self.num_layers = len(self.layers) |
|
|
|
if args.encoder_normalize_before: |
|
self.layer_norm = LayerNorm(embed_dim, export=export) |
|
else: |
|
self.layer_norm = None |
|
|
|
def build_encoder_layer(self, args): |
|
layer = TransformerEncoderLayer(args) |
|
checkpoint = getattr(args, "checkpoint_activations", False) |
|
if checkpoint: |
|
offload_to_cpu = getattr(args, "offload_activations", False) |
|
layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) |
|
|
|
|
|
min_params_to_wrap = ( |
|
getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) |
|
if not checkpoint |
|
else 0 |
|
) |
|
layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) |
|
return layer |
|
|
|
def forward_embedding( |
|
self, src_tokens, token_embedding: Optional[torch.Tensor] = None |
|
): |
|
|
|
if token_embedding is None: |
|
token_embedding = self.embed_tokens(src_tokens) |
|
x = embed = self.embed_scale * token_embedding |
|
if self.embed_positions is not None: |
|
x = embed + self.embed_positions(src_tokens) |
|
if self.layernorm_embedding is not None: |
|
x = self.layernorm_embedding(x) |
|
x = self.dropout_module(x) |
|
if self.quant_noise is not None: |
|
x = self.quant_noise(x) |
|
return x, embed |
|
|
|
def forward( |
|
self, |
|
src_tokens, |
|
src_lengths: Optional[torch.Tensor] = None, |
|
return_all_hiddens: bool = False, |
|
token_embeddings: Optional[torch.Tensor] = None, |
|
): |
|
""" |
|
Args: |
|
src_tokens (LongTensor): tokens in the source language of shape |
|
`(batch, src_len)` |
|
src_lengths (torch.LongTensor): lengths of each source sentence of |
|
shape `(batch)` |
|
return_all_hiddens (bool, optional): also return all of the |
|
intermediate hidden states (default: False). |
|
token_embeddings (torch.Tensor, optional): precomputed embeddings |
|
default `None` will recompute embeddings |
|
|
|
Returns: |
|
dict: |
|
- **encoder_out** (Tensor): the last encoder layer's output of |
|
shape `(src_len, batch, embed_dim)` |
|
- **encoder_padding_mask** (ByteTensor): the positions of |
|
padding elements of shape `(batch, src_len)` |
|
- **encoder_embedding** (Tensor): the (scaled) embedding lookup |
|
of shape `(batch, src_len, embed_dim)` |
|
- **encoder_states** (List[Tensor]): all intermediate |
|
hidden states of shape `(src_len, batch, embed_dim)`. |
|
Only populated if *return_all_hiddens* is True. |
|
""" |
|
return self.forward_scriptable( |
|
src_tokens, src_lengths, return_all_hiddens, token_embeddings |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def forward_scriptable( |
|
self, |
|
src_tokens, |
|
src_lengths: Optional[torch.Tensor] = None, |
|
return_all_hiddens: bool = False, |
|
token_embeddings: Optional[torch.Tensor] = None, |
|
): |
|
""" |
|
Args: |
|
src_tokens (LongTensor): tokens in the source language of shape |
|
`(batch, src_len)` |
|
src_lengths (torch.LongTensor): lengths of each source sentence of |
|
shape `(batch)` |
|
return_all_hiddens (bool, optional): also return all of the |
|
intermediate hidden states (default: False). |
|
token_embeddings (torch.Tensor, optional): precomputed embeddings |
|
default `None` will recompute embeddings |
|
|
|
Returns: |
|
dict: |
|
- **encoder_out** (Tensor): the last encoder layer's output of |
|
shape `(src_len, batch, embed_dim)` |
|
- **encoder_padding_mask** (ByteTensor): the positions of |
|
padding elements of shape `(batch, src_len)` |
|
- **encoder_embedding** (Tensor): the (scaled) embedding lookup |
|
of shape `(batch, src_len, embed_dim)` |
|
- **encoder_states** (List[Tensor]): all intermediate |
|
hidden states of shape `(src_len, batch, embed_dim)`. |
|
Only populated if *return_all_hiddens* is True. |
|
""" |
|
|
|
encoder_padding_mask = src_tokens.eq(self.padding_idx) |
|
has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any() |
|
|
|
x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) |
|
|
|
|
|
if has_pads: |
|
x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
encoder_states = [] |
|
|
|
if return_all_hiddens: |
|
encoder_states.append(x) |
|
|
|
|
|
for layer in self.layers: |
|
x = layer( |
|
x, encoder_padding_mask=encoder_padding_mask if has_pads else None |
|
) |
|
if return_all_hiddens: |
|
assert encoder_states is not None |
|
encoder_states.append(x) |
|
|
|
if self.layer_norm is not None: |
|
x = self.layer_norm(x) |
|
|
|
|
|
|
|
|
|
|
|
return { |
|
"encoder_out": [x], |
|
"encoder_padding_mask": [encoder_padding_mask], |
|
"encoder_embedding": [encoder_embedding], |
|
"encoder_states": encoder_states, |
|
"src_tokens": [], |
|
"src_lengths": [], |
|
} |
|
|
|
@torch.jit.export |
|
def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): |
|
""" |
|
Reorder encoder output according to *new_order*. |
|
|
|
Args: |
|
encoder_out: output from the ``forward()`` method |
|
new_order (LongTensor): desired order |
|
|
|
Returns: |
|
*encoder_out* rearranged according to *new_order* |
|
""" |
|
if len(encoder_out["encoder_out"]) == 0: |
|
new_encoder_out = [] |
|
else: |
|
new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] |
|
if len(encoder_out["encoder_padding_mask"]) == 0: |
|
new_encoder_padding_mask = [] |
|
else: |
|
new_encoder_padding_mask = [ |
|
encoder_out["encoder_padding_mask"][0].index_select(0, new_order) |
|
] |
|
if len(encoder_out["encoder_embedding"]) == 0: |
|
new_encoder_embedding = [] |
|
else: |
|
new_encoder_embedding = [ |
|
encoder_out["encoder_embedding"][0].index_select(0, new_order) |
|
] |
|
|
|
if len(encoder_out["src_tokens"]) == 0: |
|
src_tokens = [] |
|
else: |
|
src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] |
|
|
|
if len(encoder_out["src_lengths"]) == 0: |
|
src_lengths = [] |
|
else: |
|
src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] |
|
|
|
encoder_states = encoder_out["encoder_states"] |
|
if len(encoder_states) > 0: |
|
for idx, state in enumerate(encoder_states): |
|
encoder_states[idx] = state.index_select(1, new_order) |
|
|
|
return { |
|
"encoder_out": new_encoder_out, |
|
"encoder_padding_mask": new_encoder_padding_mask, |
|
"encoder_embedding": new_encoder_embedding, |
|
"encoder_states": encoder_states, |
|
"src_tokens": src_tokens, |
|
"src_lengths": src_lengths, |
|
} |
|
|
|
def max_positions(self): |
|
"""Maximum input length supported by the encoder.""" |
|
if self.embed_positions is None: |
|
return self.max_source_positions |
|
return min(self.max_source_positions, self.embed_positions.max_positions) |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
"""Upgrade a (possibly old) state dict for new versions of fairseq.""" |
|
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): |
|
weights_key = "{}.embed_positions.weights".format(name) |
|
if weights_key in state_dict: |
|
print("deleting {0}".format(weights_key)) |
|
del state_dict[weights_key] |
|
state_dict[ |
|
"{}.embed_positions._float_tensor".format(name) |
|
] = torch.FloatTensor(1) |
|
for i in range(self.num_layers): |
|
|
|
self.layers[i].upgrade_state_dict_named( |
|
state_dict, "{}.layers.{}".format(name, i) |
|
) |
|
|
|
version_key = "{}.version".format(name) |
|
if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: |
|
|
|
self.layer_norm = None |
|
self.normalize = False |
|
state_dict[version_key] = torch.Tensor([1]) |
|
return state_dict |
|
|
|
|
|
class TransformerDecoder(FairseqIncrementalDecoder): |
|
""" |
|
Transformer decoder consisting of *args.decoder_layers* layers. Each layer |
|
is a :class:`TransformerDecoderLayer`. |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
dictionary (~fairseq.data.Dictionary): decoding dictionary |
|
embed_tokens (torch.nn.Embedding): output embedding |
|
no_encoder_attn (bool, optional): whether to attend to encoder outputs |
|
(default: False). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
args, |
|
dictionary, |
|
embed_tokens, |
|
no_encoder_attn=False, |
|
output_projection=None, |
|
): |
|
self.args = args |
|
super().__init__(dictionary) |
|
self.register_buffer("version", torch.Tensor([3])) |
|
self._future_mask = torch.empty(0) |
|
|
|
self.dropout_module = FairseqDropout( |
|
args.dropout, module_name=self.__class__.__name__ |
|
) |
|
self.decoder_layerdrop = args.decoder_layerdrop |
|
self.share_input_output_embed = args.share_decoder_input_output_embed |
|
|
|
input_embed_dim = embed_tokens.embedding_dim |
|
embed_dim = args.decoder_embed_dim |
|
self.embed_dim = embed_dim |
|
self.output_embed_dim = args.decoder_output_dim |
|
|
|
self.padding_idx = embed_tokens.padding_idx |
|
self.max_target_positions = args.max_target_positions |
|
|
|
self.embed_tokens = embed_tokens |
|
|
|
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) |
|
|
|
if not args.adaptive_input and args.quant_noise_pq > 0: |
|
self.quant_noise = apply_quant_noise_( |
|
nn.Linear(embed_dim, embed_dim, bias=False), |
|
args.quant_noise_pq, |
|
args.quant_noise_pq_block_size, |
|
) |
|
else: |
|
self.quant_noise = None |
|
|
|
self.project_in_dim = ( |
|
Linear(input_embed_dim, embed_dim, bias=False) |
|
if embed_dim != input_embed_dim |
|
else None |
|
) |
|
self.embed_positions = ( |
|
PositionalEmbedding( |
|
self.max_target_positions, |
|
embed_dim, |
|
self.padding_idx, |
|
learned=args.decoder_learned_pos, |
|
) |
|
if not args.no_token_positional_embeddings |
|
else None |
|
) |
|
export = getattr(args, "export", False) |
|
if getattr(args, "layernorm_embedding", False): |
|
self.layernorm_embedding = LayerNorm(embed_dim, export=export) |
|
else: |
|
self.layernorm_embedding = None |
|
|
|
self.cross_self_attention = getattr(args, "cross_self_attention", False) |
|
|
|
if self.decoder_layerdrop > 0.0: |
|
self.layers = LayerDropModuleList(p=self.decoder_layerdrop) |
|
else: |
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend( |
|
[ |
|
self.build_decoder_layer(args, no_encoder_attn) |
|
for _ in range(args.decoder_layers) |
|
] |
|
) |
|
self.num_layers = len(self.layers) |
|
|
|
if args.decoder_normalize_before and not getattr( |
|
args, "no_decoder_final_norm", False |
|
): |
|
self.layer_norm = LayerNorm(embed_dim, export=export) |
|
else: |
|
self.layer_norm = None |
|
|
|
self.project_out_dim = ( |
|
Linear(embed_dim, self.output_embed_dim, bias=False) |
|
if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights |
|
else None |
|
) |
|
|
|
self.adaptive_softmax = None |
|
self.output_projection = output_projection |
|
if self.output_projection is None: |
|
self.build_output_projection(args, dictionary, embed_tokens) |
|
|
|
def build_output_projection(self, args, dictionary, embed_tokens): |
|
if args.adaptive_softmax_cutoff is not None: |
|
self.adaptive_softmax = AdaptiveSoftmax( |
|
len(dictionary), |
|
self.output_embed_dim, |
|
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), |
|
dropout=args.adaptive_softmax_dropout, |
|
adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, |
|
factor=args.adaptive_softmax_factor, |
|
tie_proj=args.tie_adaptive_proj, |
|
) |
|
elif self.share_input_output_embed: |
|
self.output_projection = nn.Linear( |
|
self.embed_tokens.weight.shape[1], |
|
self.embed_tokens.weight.shape[0], |
|
bias=False, |
|
) |
|
self.output_projection.weight = self.embed_tokens.weight |
|
else: |
|
self.output_projection = nn.Linear( |
|
self.output_embed_dim, len(dictionary), bias=False |
|
) |
|
nn.init.normal_( |
|
self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5 |
|
) |
|
num_base_layers = getattr(args, "base_layers", 0) |
|
for i in range(num_base_layers): |
|
self.layers.insert( |
|
((i + 1) * args.decoder_layers) // (num_base_layers + 1), |
|
BaseLayer(args), |
|
) |
|
|
|
def build_decoder_layer(self, args, no_encoder_attn=False): |
|
layer = TransformerDecoderLayer(args, no_encoder_attn) |
|
checkpoint = getattr(args, "checkpoint_activations", False) |
|
if checkpoint: |
|
offload_to_cpu = getattr(args, "offload_activations", False) |
|
layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) |
|
|
|
|
|
min_params_to_wrap = ( |
|
getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) |
|
if not checkpoint |
|
else 0 |
|
) |
|
layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) |
|
return layer |
|
|
|
def forward( |
|
self, |
|
prev_output_tokens, |
|
encoder_out: Optional[Dict[str, List[Tensor]]] = None, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
features_only: bool = False, |
|
full_context_alignment: bool = False, |
|
alignment_layer: Optional[int] = None, |
|
alignment_heads: Optional[int] = None, |
|
src_lengths: Optional[Any] = None, |
|
return_all_hiddens: bool = False, |
|
): |
|
""" |
|
Args: |
|
prev_output_tokens (LongTensor): previous decoder outputs of shape |
|
`(batch, tgt_len)`, for teacher forcing |
|
encoder_out (optional): output from the encoder, used for |
|
encoder-side attention, should be of size T x B x C |
|
incremental_state (dict): dictionary used for storing state during |
|
:ref:`Incremental decoding` |
|
features_only (bool, optional): only return features without |
|
applying output layer (default: False). |
|
full_context_alignment (bool, optional): don't apply |
|
auto-regressive mask to self-attention (default: False). |
|
|
|
Returns: |
|
tuple: |
|
- the decoder's output of shape `(batch, tgt_len, vocab)` |
|
- a dictionary with any model-specific outputs |
|
""" |
|
|
|
x, extra = self.extract_features( |
|
prev_output_tokens, |
|
encoder_out=encoder_out, |
|
incremental_state=incremental_state, |
|
full_context_alignment=full_context_alignment, |
|
alignment_layer=alignment_layer, |
|
alignment_heads=alignment_heads, |
|
) |
|
|
|
if not features_only: |
|
x = self.output_layer(x) |
|
return x, extra |
|
|
|
def extract_features( |
|
self, |
|
prev_output_tokens, |
|
encoder_out: Optional[Dict[str, List[Tensor]]], |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
full_context_alignment: bool = False, |
|
alignment_layer: Optional[int] = None, |
|
alignment_heads: Optional[int] = None, |
|
): |
|
return self.extract_features_scriptable( |
|
prev_output_tokens, |
|
encoder_out, |
|
incremental_state, |
|
full_context_alignment, |
|
alignment_layer, |
|
alignment_heads, |
|
) |
|
|
|
""" |
|
A scriptable subclass of this class has an extract_features method and calls |
|
super().extract_features, but super() is not supported in torchscript. A copy of |
|
this function is made to be used in the subclass instead. |
|
""" |
|
|
|
def extract_features_scriptable( |
|
self, |
|
prev_output_tokens, |
|
encoder_out: Optional[Dict[str, List[Tensor]]], |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
full_context_alignment: bool = False, |
|
alignment_layer: Optional[int] = None, |
|
alignment_heads: Optional[int] = None, |
|
): |
|
""" |
|
Similar to *forward* but only return features. |
|
|
|
Includes several features from "Jointly Learning to Align and |
|
Translate with Transformer Models" (Garg et al., EMNLP 2019). |
|
|
|
Args: |
|
full_context_alignment (bool, optional): don't apply |
|
auto-regressive mask to self-attention (default: False). |
|
alignment_layer (int, optional): return mean alignment over |
|
heads at this layer (default: last layer). |
|
alignment_heads (int, optional): only average alignment over |
|
this many heads (default: all heads). |
|
|
|
Returns: |
|
tuple: |
|
- the decoder's features of shape `(batch, tgt_len, embed_dim)` |
|
- a dictionary with any model-specific outputs |
|
""" |
|
bs, slen = prev_output_tokens.size() |
|
if alignment_layer is None: |
|
alignment_layer = self.num_layers - 1 |
|
|
|
enc: Optional[Tensor] = None |
|
padding_mask: Optional[Tensor] = None |
|
if encoder_out is not None and len(encoder_out["encoder_out"]) > 0: |
|
enc = encoder_out["encoder_out"][0] |
|
assert ( |
|
enc.size()[1] == bs |
|
), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}" |
|
if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0: |
|
padding_mask = encoder_out["encoder_padding_mask"][0] |
|
|
|
|
|
positions = None |
|
if self.embed_positions is not None: |
|
positions = self.embed_positions( |
|
prev_output_tokens, incremental_state=incremental_state |
|
) |
|
|
|
if incremental_state is not None: |
|
prev_output_tokens = prev_output_tokens[:, -1:] |
|
if positions is not None: |
|
positions = positions[:, -1:] |
|
|
|
|
|
x = self.embed_scale * self.embed_tokens(prev_output_tokens) |
|
|
|
if self.quant_noise is not None: |
|
x = self.quant_noise(x) |
|
|
|
if self.project_in_dim is not None: |
|
x = self.project_in_dim(x) |
|
|
|
if positions is not None: |
|
x += positions |
|
|
|
if self.layernorm_embedding is not None: |
|
x = self.layernorm_embedding(x) |
|
|
|
x = self.dropout_module(x) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
self_attn_padding_mask: Optional[Tensor] = None |
|
if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): |
|
self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) |
|
|
|
|
|
attn: Optional[Tensor] = None |
|
inner_states: List[Optional[Tensor]] = [x] |
|
for idx, layer in enumerate(self.layers): |
|
if incremental_state is None and not full_context_alignment: |
|
self_attn_mask = self.buffered_future_mask(x) |
|
else: |
|
self_attn_mask = None |
|
|
|
x, layer_attn, _ = layer( |
|
x, |
|
enc, |
|
padding_mask, |
|
incremental_state, |
|
self_attn_mask=self_attn_mask, |
|
self_attn_padding_mask=self_attn_padding_mask, |
|
need_attn=bool((idx == alignment_layer)), |
|
need_head_weights=bool((idx == alignment_layer)), |
|
) |
|
inner_states.append(x) |
|
if layer_attn is not None and idx == alignment_layer: |
|
attn = layer_attn.float().to(x) |
|
|
|
if attn is not None: |
|
if alignment_heads is not None: |
|
attn = attn[:alignment_heads] |
|
|
|
|
|
attn = attn.mean(dim=0) |
|
|
|
if self.layer_norm is not None: |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
if self.project_out_dim is not None: |
|
x = self.project_out_dim(x) |
|
|
|
return x, {"attn": [attn], "inner_states": inner_states} |
|
|
|
def output_layer(self, features): |
|
"""Project features to the vocabulary size.""" |
|
if self.adaptive_softmax is None: |
|
|
|
return self.output_projection(features) |
|
else: |
|
return features |
|
|
|
def max_positions(self): |
|
"""Maximum output length supported by the decoder.""" |
|
if self.embed_positions is None: |
|
return self.max_target_positions |
|
return min(self.max_target_positions, self.embed_positions.max_positions) |
|
|
|
def buffered_future_mask(self, tensor): |
|
dim = tensor.size(0) |
|
|
|
if ( |
|
self._future_mask.size(0) == 0 |
|
or (not self._future_mask.device == tensor.device) |
|
or self._future_mask.size(0) < dim |
|
): |
|
self._future_mask = torch.triu( |
|
utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 |
|
) |
|
self._future_mask = self._future_mask.to(tensor) |
|
return self._future_mask[:dim, :dim] |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
"""Upgrade a (possibly old) state dict for new versions of fairseq.""" |
|
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): |
|
weights_key = "{}.embed_positions.weights".format(name) |
|
if weights_key in state_dict: |
|
del state_dict[weights_key] |
|
state_dict[ |
|
"{}.embed_positions._float_tensor".format(name) |
|
] = torch.FloatTensor(1) |
|
|
|
if f"{name}.output_projection.weight" not in state_dict: |
|
if self.share_input_output_embed: |
|
embed_out_key = f"{name}.embed_tokens.weight" |
|
else: |
|
embed_out_key = f"{name}.embed_out" |
|
if embed_out_key in state_dict: |
|
state_dict[f"{name}.output_projection.weight"] = state_dict[ |
|
embed_out_key |
|
] |
|
if not self.share_input_output_embed: |
|
del state_dict[embed_out_key] |
|
|
|
for i in range(self.num_layers): |
|
|
|
layer_norm_map = { |
|
"0": "self_attn_layer_norm", |
|
"1": "encoder_attn_layer_norm", |
|
"2": "final_layer_norm", |
|
} |
|
for old, new in layer_norm_map.items(): |
|
for m in ("weight", "bias"): |
|
k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) |
|
if k in state_dict: |
|
state_dict[ |
|
"{}.layers.{}.{}.{}".format(name, i, new, m) |
|
] = state_dict[k] |
|
del state_dict[k] |
|
|
|
version_key = "{}.version".format(name) |
|
if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: |
|
|
|
self.layer_norm = None |
|
self.normalize = False |
|
state_dict[version_key] = torch.Tensor([1]) |
|
|
|
return state_dict |
|
|
|
|
|
def Embedding(num_embeddings, embedding_dim, padding_idx): |
|
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) |
|
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) |
|
nn.init.constant_(m.weight[padding_idx], 0) |
|
return m |
|
|
|
|
|
def Linear(in_features, out_features, bias=True): |
|
m = nn.Linear(in_features, out_features, bias) |
|
nn.init.xavier_uniform_(m.weight) |
|
if bias: |
|
nn.init.constant_(m.bias, 0.0) |
|
return m |
|
|
|
|
|
@register_model_architecture("transformer", "transformer_tiny") |
|
def tiny_architecture(args): |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 64) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 64) |
|
args.encoder_layers = getattr(args, "encoder_layers", 2) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2) |
|
args.decoder_layers = getattr(args, "decoder_layers", 2) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2) |
|
return base_architecture(args) |
|
|
|
|
|
@register_model_architecture("transformer", "transformer") |
|
def base_architecture(args): |
|
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) |
|
args.encoder_layers = getattr(args, "encoder_layers", 6) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) |
|
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) |
|
args.decoder_ffn_embed_dim = getattr( |
|
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim |
|
) |
|
args.decoder_layers = getattr(args, "decoder_layers", 6) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) |
|
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) |
|
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.0) |
|
args.activation_dropout = getattr(args, "activation_dropout", 0.0) |
|
args.activation_fn = getattr(args, "activation_fn", "relu") |
|
args.dropout = getattr(args, "dropout", 0.1) |
|
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) |
|
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) |
|
args.share_decoder_input_output_embed = getattr( |
|
args, "share_decoder_input_output_embed", False |
|
) |
|
args.share_all_embeddings = getattr(args, "share_all_embeddings", False) |
|
args.no_token_positional_embeddings = getattr( |
|
args, "no_token_positional_embeddings", False |
|
) |
|
args.adaptive_input = getattr(args, "adaptive_input", False) |
|
args.no_cross_attention = getattr(args, "no_cross_attention", False) |
|
args.cross_self_attention = getattr(args, "cross_self_attention", False) |
|
|
|
args.decoder_output_dim = getattr( |
|
args, "decoder_output_dim", args.decoder_embed_dim |
|
) |
|
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) |
|
|
|
args.no_scale_embedding = getattr(args, "no_scale_embedding", False) |
|
args.layernorm_embedding = getattr(args, "layernorm_embedding", False) |
|
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) |
|
args.checkpoint_activations = getattr(args, "checkpoint_activations", False) |
|
args.offload_activations = getattr(args, "offload_activations", False) |
|
if args.offload_activations: |
|
args.checkpoint_activations = True |
|
args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) |
|
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) |
|
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) |
|
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) |
|
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) |
|
args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) |
|
args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) |
|
|
|
|
|
@register_model_architecture("transformer", "transformer_iwslt_de_en") |
|
def transformer_iwslt_de_en(args): |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) |
|
args.encoder_layers = getattr(args, "encoder_layers", 6) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) |
|
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) |
|
args.decoder_layers = getattr(args, "decoder_layers", 6) |
|
base_architecture(args) |
|
|
|
|
|
@register_model_architecture("transformer", "transformer_wmt_en_de") |
|
def transformer_wmt_en_de(args): |
|
base_architecture(args) |
|
|
|
|
|
|
|
@register_model_architecture("transformer", "transformer_vaswani_wmt_en_de_big") |
|
def transformer_vaswani_wmt_en_de_big(args): |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) |
|
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) |
|
args.dropout = getattr(args, "dropout", 0.3) |
|
base_architecture(args) |
|
|
|
|
|
@register_model_architecture("transformer", "transformer_vaswani_wmt_en_fr_big") |
|
def transformer_vaswani_wmt_en_fr_big(args): |
|
args.dropout = getattr(args, "dropout", 0.1) |
|
transformer_vaswani_wmt_en_de_big(args) |
|
|
|
|
|
@register_model_architecture("transformer", "transformer_wmt_en_de_big") |
|
def transformer_wmt_en_de_big(args): |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.1) |
|
transformer_vaswani_wmt_en_de_big(args) |
|
|
|
|
|
|
|
@register_model_architecture("transformer", "transformer_wmt_en_de_big_t2t") |
|
def transformer_wmt_en_de_big_t2t(args): |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) |
|
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.1) |
|
args.activation_dropout = getattr(args, "activation_dropout", 0.1) |
|
transformer_vaswani_wmt_en_de_big(args) |
|
|