|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class GumbelVectorQuantizer(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_vars, |
|
temp, |
|
groups, |
|
combine_groups, |
|
vq_dim, |
|
time_first, |
|
activation=nn.GELU(), |
|
weight_proj_depth=1, |
|
weight_proj_factor=1, |
|
): |
|
"""Vector quantization using gumbel softmax |
|
|
|
Args: |
|
dim: input dimension (channels) |
|
num_vars: number of quantized vectors per group |
|
temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor) |
|
groups: number of groups for vector quantization |
|
combine_groups: whether to use the vectors for all groups |
|
vq_dim: dimensionality of the resulting quantized vector |
|
time_first: if true, expect input in BxTxC format, otherwise in BxCxT |
|
activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1 |
|
weight_proj_depth: number of layers (with activation in between) to project input before computing logits |
|
weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of |
|
projections by this factor |
|
""" |
|
super().__init__() |
|
|
|
self.groups = groups |
|
self.combine_groups = combine_groups |
|
self.input_dim = dim |
|
self.num_vars = num_vars |
|
self.time_first = time_first |
|
|
|
assert ( |
|
vq_dim % groups == 0 |
|
), f"dim {vq_dim} must be divisible by groups {groups} for concatenation" |
|
|
|
var_dim = vq_dim // groups |
|
num_groups = groups if not combine_groups else 1 |
|
|
|
self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * num_vars, var_dim)) |
|
nn.init.uniform_(self.vars) |
|
|
|
if weight_proj_depth > 1: |
|
|
|
def block(input_dim, output_dim): |
|
return nn.Sequential(nn.Linear(input_dim, output_dim), activation) |
|
|
|
inner_dim = self.input_dim * weight_proj_factor |
|
self.weight_proj = nn.Sequential( |
|
*[ |
|
block(self.input_dim if i == 0 else inner_dim, inner_dim) |
|
for i in range(weight_proj_depth - 1) |
|
], |
|
nn.Linear(inner_dim, groups * num_vars), |
|
) |
|
else: |
|
self.weight_proj = nn.Linear(self.input_dim, groups * num_vars) |
|
nn.init.normal_(self.weight_proj.weight, mean=0, std=1) |
|
nn.init.zeros_(self.weight_proj.bias) |
|
|
|
if isinstance(temp, str): |
|
import ast |
|
temp = ast.literal_eval(temp) |
|
assert len(temp) == 3, f"{temp}, {len(temp)}" |
|
|
|
self.max_temp, self.min_temp, self.temp_decay = temp |
|
self.curr_temp = self.max_temp |
|
self.codebook_indices = None |
|
|
|
def set_num_updates(self, num_updates): |
|
self.curr_temp = max( |
|
self.max_temp * self.temp_decay ** num_updates, self.min_temp |
|
) |
|
|
|
def get_codebook_indices(self): |
|
if self.codebook_indices is None: |
|
from itertools import product |
|
|
|
p = [range(self.num_vars)] * self.groups |
|
inds = list(product(*p)) |
|
self.codebook_indices = torch.tensor( |
|
inds, dtype=torch.long, device=self.vars.device |
|
).flatten() |
|
|
|
if not self.combine_groups: |
|
self.codebook_indices = self.codebook_indices.view( |
|
self.num_vars ** self.groups, -1 |
|
) |
|
for b in range(1, self.groups): |
|
self.codebook_indices[:, b] += self.num_vars * b |
|
self.codebook_indices = self.codebook_indices.flatten() |
|
return self.codebook_indices |
|
|
|
def codebook(self): |
|
indices = self.get_codebook_indices() |
|
return ( |
|
self.vars.squeeze(0) |
|
.index_select(0, indices) |
|
.view(self.num_vars ** self.groups, -1) |
|
) |
|
|
|
def sample_from_codebook(self, b, n): |
|
indices = self.get_codebook_indices() |
|
indices = indices.view(-1, self.groups) |
|
cb_size = indices.size(0) |
|
assert ( |
|
n < cb_size |
|
), f"sample size {n} is greater than size of codebook {cb_size}" |
|
sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,)) |
|
indices = indices[sample_idx] |
|
|
|
z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b, n, -1) |
|
return z |
|
|
|
def to_codebook_index(self, indices): |
|
res = indices.new_full(indices.shape[:-1], 0) |
|
for i in range(self.groups): |
|
exponent = self.groups - i - 1 |
|
res += indices[..., i] * (self.num_vars ** exponent) |
|
return res |
|
|
|
def forward_idx(self, x): |
|
res = self.forward(x, produce_targets=True) |
|
return res["x"], res["targets"] |
|
|
|
def forward(self, x, produce_targets=False): |
|
|
|
result = {"num_vars": self.num_vars * self.groups} |
|
|
|
if not self.time_first: |
|
x = x.transpose(1, 2) |
|
|
|
bsz, tsz, fsz = x.shape |
|
x = x.reshape(-1, fsz) |
|
x = self.weight_proj(x) |
|
x = x.view(bsz * tsz * self.groups, -1) |
|
|
|
_, k = x.max(-1) |
|
hard_x = ( |
|
x.new_zeros(*x.shape) |
|
.scatter_(-1, k.view(-1, 1), 1.0) |
|
.view(bsz * tsz, self.groups, -1) |
|
) |
|
hard_probs = torch.mean(hard_x.float(), dim=0) |
|
result["code_perplexity"] = torch.exp( |
|
-torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) |
|
).sum() |
|
|
|
avg_probs = torch.softmax( |
|
x.view(bsz * tsz, self.groups, -1).float(), dim=-1 |
|
).mean(dim=0) |
|
result["prob_perplexity"] = torch.exp( |
|
-torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1) |
|
).sum() |
|
|
|
result["temp"] = self.curr_temp |
|
|
|
if self.training: |
|
x = F.gumbel_softmax(x.float(), tau=self.curr_temp, hard=True).type_as(x) |
|
else: |
|
x = hard_x |
|
|
|
x = x.view(bsz * tsz, -1) |
|
|
|
vars = self.vars |
|
if self.combine_groups: |
|
vars = vars.repeat(1, self.groups, 1) |
|
|
|
if produce_targets: |
|
result["targets"] = ( |
|
x.view(bsz * tsz * self.groups, -1) |
|
.argmax(dim=-1) |
|
.view(bsz, tsz, self.groups) |
|
.detach() |
|
) |
|
|
|
x = x.unsqueeze(-1) * vars |
|
x = x.view(bsz * tsz, self.groups, self.num_vars, -1) |
|
x = x.sum(-2) |
|
x = x.view(bsz, tsz, -1) |
|
|
|
if not self.time_first: |
|
x = x.transpose(1, 2) |
|
|
|
result["x"] = x |
|
|
|
return result |
|
|