HuBERT / fairseq /optim /lr_scheduler /reduce_lr_on_plateau.py
aliabd
full working demo
d5175d3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import List
import torch.optim.lr_scheduler
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class ReduceLROnPlateauLRScheduleConfig(FairseqDataclass):
lr_shrink: float = field(
default=0.1, metadata={"help": "shrink factor for annealing"}
)
lr_threshold: float = field(
default=1e-4,
metadata={
"help": (
"threshold for measuring the new optimum, to only focus on "
"significant changes"
)
},
)
lr_patience: int = field(
default=0,
metadata={
"help": (
"number of epochs with no improvement after which learning rate will "
"be reduced"
)
},
)
warmup_updates: int = field(
default=0,
metadata={"help": "warmup the learning rate linearly for the first N updates"},
)
warmup_init_lr: float = field(
default=-1,
metadata={
"help": "initial learning rate during warmup phase; default is cfg.lr"
},
)
lr: List[float] = II("optimization.lr")
maximize_best_checkpoint_metric: bool = II(
"checkpoint.maximize_best_checkpoint_metric"
)
@register_lr_scheduler(
"reduce_lr_on_plateau", dataclass=ReduceLROnPlateauLRScheduleConfig
)
class ReduceLROnPlateauLRSchedule(FairseqLRScheduler):
"""
Decay the LR by a factor every time the validation loss plateaus.
Also comes with optional warmup phase, where we linearly increase
the learning rate from some initial learning rate
(``--warmup-init-lr``) until the configured learning rate
(``--lr``). Thereafter the lr is adjusted according to original
reduce_on_plateau scheme.
During warmup::
lrs = torch.linspace(
cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates
)
lr = lrs[update_num]
"""
def __init__(self, cfg: ReduceLROnPlateauLRScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
if len(cfg.lr) > 1:
raise ValueError(
"Cannot use a fixed learning rate schedule with reduce_lr_on_plateau."
" Consider --lr-scheduler=fixed instead."
)
self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer.optimizer,
patience=cfg.lr_patience,
factor=cfg.lr_shrink,
mode="max" if cfg.maximize_best_checkpoint_metric else "min",
threshold=cfg.lr_threshold,
)
warmup_end_lr = cfg.lr[0]
# if no warm up, sets initial lr to be cfg.lr[0]
if cfg.warmup_init_lr < 0:
cfg.warmup_init_lr = 0 if cfg.warmup_updates > 0 else warmup_end_lr
# linearly warmup for the first cfg.warmup_updates
if cfg.warmup_updates > 0:
self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates
# this flag is either set from arg when no warm up, or set by
# step_update() when warmup finishes
self.warmup_end = True if cfg.warmup_updates <= 0 else False
# initial learning rate
# this self.lr is used only during init and/or warm up period
self.lr = cfg.warmup_init_lr
self.optimizer.set_lr(self.lr)
def state_dict(self):
"""Return the LR scheduler state dict."""
return {
"best": self.lr_scheduler.best,
"last_epoch": self.lr_scheduler.last_epoch,
}
def load_state_dict(self, state_dict):
"""Load an LR scheduler state dict."""
self.lr_scheduler.best = state_dict["best"]
if "last_epoch" in state_dict:
self.lr_scheduler.last_epoch = state_dict["last_epoch"]
def step(self, epoch, val_loss=None):
"""
Update the learning rate at the end of the given epoch if warmup
finishes otherwise no update of lr on epoch boundaries
"""
if val_loss is not None and self.warmup_end is True:
self.lr_scheduler.step(val_loss)
else:
self.lr_scheduler.last_epoch = epoch
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""
Update the learning rate after each update."""
# if there is warmup
if self.cfg.warmup_updates > 0:
if num_updates <= self.cfg.warmup_updates:
self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step
self.optimizer.set_lr(self.lr)
else:
if self.warmup_end is False:
self.warmup_end = True
# else do nothing
return self.optimizer.get_lr()