# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, NamedTuple, Optional import torch import torch.nn as nn import torch.nn.functional as F from examples.simultaneous_translation.modules.monotonic_transformer_layer import ( TransformerMonotonicDecoderLayer, TransformerMonotonicEncoderLayer, ) from fairseq.models import ( register_model, register_model_architecture, ) from fairseq.models.transformer import ( TransformerModel, TransformerEncoder, TransformerDecoder, base_architecture, transformer_iwslt_de_en, transformer_vaswani_wmt_en_de_big, transformer_vaswani_wmt_en_fr_big, ) from torch import Tensor DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 TransformerMonotonicDecoderOut = NamedTuple( "TransformerMonotonicDecoderOut", [ ("action", int), ("attn_list", Optional[List[Optional[Dict[str, Tensor]]]]), ("step_list", Optional[List[Optional[Tensor]]]), ("encoder_out", Optional[Dict[str, List[Tensor]]]), ("encoder_padding_mask", Optional[Tensor]), ], ) @register_model("transformer_unidirectional") class TransformerUnidirectionalModel(TransformerModel): @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerMonotonicEncoder(args, src_dict, embed_tokens) @register_model("transformer_monotonic") class TransformerModelSimulTrans(TransformerModel): @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerMonotonicEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerMonotonicDecoder(args, tgt_dict, embed_tokens) def _indices_from_states(self, states): if type(states["indices"]["src"]) == list: if next(self.parameters()).is_cuda: tensor = torch.cuda.LongTensor else: tensor = torch.LongTensor src_indices = tensor( [states["indices"]["src"][: 1 + states["steps"]["src"]]] ) tgt_indices = tensor( [[self.decoder.dictionary.eos()] + states["indices"]["tgt"]] ) else: src_indices = states["indices"]["src"][: 1 + states["steps"]["src"]] tgt_indices = states["indices"]["tgt"] return src_indices, None, tgt_indices class TransformerMonotonicEncoder(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) self.dictionary = dictionary self.layers = nn.ModuleList([]) self.layers.extend( [TransformerMonotonicEncoderLayer(args) for i in range(args.encoder_layers)] ) class TransformerMonotonicDecoder(TransformerDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False) self.dictionary = dictionary self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerMonotonicDecoderLayer(args, no_encoder_attn) for _ in range(args.decoder_layers) ] ) def pre_attention( self, prev_output_tokens, encoder_out_dict: Dict[str, List[Tensor]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_out = encoder_out_dict["encoder_out"][0] encoder_padding_mask = ( encoder_out_dict["encoder_padding_mask"][0] if encoder_out_dict["encoder_padding_mask"] and len(encoder_out_dict["encoder_padding_mask"]) > 0 else None ) return x, encoder_out, encoder_padding_mask def post_attention(self, x): if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x def clear_cache( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], end_id: Optional[int] = None, ): """ Clear cache in the monotonic layers. The cache is generated because of a forward pass of decode but no prediction. end_id is the last idx of the layers """ if end_id is None: end_id = len(self.layers) for index, layer in enumerate(self.layers): if index < end_id: layer.prune_incremental_state(incremental_state) def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, # unused alignment_layer: Optional[int] = None, # unused alignment_heads: Optional[int] = None, # unsed ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # incremental_state = None assert encoder_out is not None (x, encoder_outs, encoder_padding_mask) = self.pre_attention( prev_output_tokens, encoder_out, incremental_state ) attn = None inner_states = [x] attn_list: List[Optional[Dict[str, Tensor]]] = [] step_list: List[Optional[Tensor]] = [] for i, layer in enumerate(self.layers): x, attn, _ = layer( x=x, encoder_out=encoder_outs, encoder_padding_mask=encoder_padding_mask, incremental_state=incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) attn_list.append(attn) if incremental_state is not None: curr_steps = layer.get_head_steps(incremental_state) step_list.append(curr_steps) if_online = incremental_state["online"]["only"] assert if_online is not None if if_online.to(torch.bool): # Online indicates that the encoder states are still changing assert attn is not None assert curr_steps is not None p_choose = ( attn["p_choose"].squeeze(0).squeeze(1).gather(1, curr_steps.t()) ) new_steps = curr_steps + (p_choose < 0.5).t().type_as(curr_steps) src = incremental_state["steps"]["src"] assert src is not None if (new_steps >= src).any(): # We need to prune the last self_attn saved_state # if model decide not to read # otherwise there will be duplicated saved_state self.clear_cache(incremental_state, i + 1) return x, TransformerMonotonicDecoderOut( action=0, attn_list=None, step_list=None, encoder_out=None, encoder_padding_mask=None, ) x = self.post_attention(x) return x, TransformerMonotonicDecoderOut( action=1, attn_list=attn_list, step_list=step_list, encoder_out=encoder_out, encoder_padding_mask=encoder_padding_mask, ) def reorder_incremental_state(self, incremental_state, new_order): super().reorder_incremental_state(incremental_state, new_order) if "fastest_step" in incremental_state: incremental_state["fastest_step"] = incremental_state[ "fastest_step" ].index_select(0, new_order) @register_model_architecture("transformer_monotonic", "transformer_monotonic") def base_monotonic_architecture(args): base_architecture(args) args.encoder_unidirectional = getattr(args, "encoder_unidirectional", False) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_iwslt_de_en" ) def transformer_monotonic_iwslt_de_en(args): transformer_iwslt_de_en(args) base_monotonic_architecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_de_big" ) def transformer_monotonic_vaswani_wmt_en_de_big(args): transformer_vaswani_wmt_en_de_big(args) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_fr_big" ) def transformer_monotonic_vaswani_wmt_en_fr_big(args): transformer_monotonic_vaswani_wmt_en_fr_big(args) @register_model_architecture( "transformer_unidirectional", "transformer_unidirectional_iwslt_de_en" ) def transformer_unidirectional_iwslt_de_en(args): transformer_iwslt_de_en(args)