# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch def emulate_int(w, bits, method, scale=None, zero_point=None): q = globals()[f"emulate_int{bits}_{method}"] return q(w, scale=scale, zero_point=zero_point) def quantize(w, scale, zero_point): return ( torch.clamp(torch.round(w / scale + zero_point), 0, 255) - zero_point ) * scale def emulate_int8_histogram(w, scale=None, zero_point=None): if scale is None: obs = torch.quantization.observer.HistogramObserver() _ = obs(w.float()) scale, zero_point = obs.calculate_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point), scale, zero_point def emulate_int8_channel(w, scale=None, zero_point=None): if scale is None: obs = torch.quantization.observer.PerChannelMinMaxObserver( ch_axis=-1, qscheme=torch.per_channel_symmetric ) _ = obs(w) scale, zero_point, ch_axis = obs.get_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point), scale, zero_point def emulate_int8_tensor(w, scale=None, zero_point=None): if scale is None: obs = torch.quantization.observer.MinMaxObserver() _ = obs(w) scale, zero_point = obs.calculate_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point), scale, zero_point