# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import logging import os import sys import torch from argparse import Namespace from dataclasses import dataclass, field from typing import Optional, Any from omegaconf import MISSING, II, OmegaConf from fairseq.data import ( AddTargetDataset, BinarizedAudioDataset, Dictionary, FileAudioDataset, encoders, ) from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.configs import GenerationConfig from . import FairseqTask, register_task from .. import utils from ..logging import metrics logger = logging.getLogger(__name__) class LabelEncoder(object): def __init__(self, dictionary): self.dictionary = dictionary def __call__(self, label): return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False ) @dataclass class InferredW2vConfig: # The following are needed to precompute mask and mask channel indices # before model's forward. mask_length: Optional[int] = II("model.mask_length") mask_prob: Optional[float] = II("model.mask_prob") mask_selection: Optional[str] = II("model.mask_selection") mask_other: Optional[float] = II("model.mask_other") no_mask_overlap: Optional[bool] = II("model.no_mask_overlap") mask_min_space: Optional[int] = II("model.mask_min_space") mask_channel_length: Optional[int] = II("model.mask_channel_length") mask_channel_prob: Optional[float] = II("model.mask_channel_prob") mask_channel_selection: Optional[str] = II("model.mask_channel_selection") mask_channel_other: Optional[float] = II("model.mask_channel_other") no_mask_channel_overlap: Optional[bool] = II("model.no_mask_channel_overlap") mask_channel_min_space: Optional[int] = II("model.mask_channel_min_space") conv_feature_layers: Optional[str] = II("model.conv_feature_layers") encoder_embed_dim: Optional[int] = II("model.encoder_embed_dim") @dataclass class AudioPretrainingConfig(FairseqDataclass): data: str = field(default=MISSING, metadata={"help": "path to data directory"}) labels: Optional[str] = field( default=None, metadata={"help": "extension of the label file to load, used for fine-tuning"}, ) binarized_dataset: bool = field( default=False, metadata={ "help": "if true, loads binarized dataset (useful for very large datasets). " "See examples/wav2vec/scripts/binarize_manifest.sh" }, ) sample_rate: int = field( default=16_000, metadata={ "help": "target sample rate. audio files will be up/down sampled to this rate" }, ) normalize: bool = field( default=False, metadata={"help": "if set, normalizes input to have 0 mean and unit variance"}, ) enable_padding: bool = field( default=False, metadata={"help": "pad shorter samples instead of cropping"} ) max_sample_size: Optional[int] = field( default=None, metadata={"help": "max sample size to crop to for batching"} ) min_sample_size: Optional[int] = field( default=None, metadata={"help": "min sample size to skip small examples"} ) # Options for reporting WER metrics during validation. Only applicable to # Seq2Seq models during fine-tuning eval_wer: bool = field( default=False, metadata={"help": "compute WER for Seq2Seq models"} ) eval_wer_config: GenerationConfig = field( default_factory=lambda: GenerationConfig(), metadata={"help": "beam search config for evaluating wer during training"}, ) eval_wer_tokenizer: Any = field( default=None, metadata={"help": "tokenizer config for evaluating wer during training"}, ) eval_wer_post_process: str = field( default="letter", metadata={ "help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)" }, ) autoregressive: bool = field( default=False, metadata={ "help": "required for autoregressive decoders (like seq2seq models); " "adds 'prev_output_tokens' to input and appends eos to target" }, ) num_batch_buckets: int = field( default=0, metadata={"help": "number of buckets"}, ) precompute_mask_indices: bool = field( default=False, metadata={ "help": "flag to compute mask indices in data preparation.", }, ) inferred_w2v_config: Optional[InferredW2vConfig] = field( default=None, metadata={ "help": "wav2vec 2.0 masking arguments used to pre-compute masks (required for TPU)", }, ) tpu: bool = II("common.tpu") @register_task("audio_pretraining", dataclass=AudioPretrainingConfig) class AudioPretrainingTask(FairseqTask): """ """ cfg: AudioPretrainingConfig def __init__( self, cfg: AudioPretrainingConfig, ): super().__init__(cfg) if cfg.eval_wer: assert cfg.labels is not None, "eval_wer can only be set during fine-tuning" self.blank_symbol = "" self.state.add_factory("target_dictionary", self.load_target_dictionary) @classmethod def setup_task(cls, cfg: AudioPretrainingConfig, **kwargs): """Setup the task (e.g., load dictionaries). Args: cfg (AudioPretrainingConfig): configuration of this task """ return cls(cfg) def load_target_dictionary(self): if self.cfg.labels: dict_path = os.path.join(self.cfg.data, f"dict.{self.cfg.labels}.txt") return Dictionary.load(dict_path) return None def _get_mask_precompute_kwargs(self, cfg): if self.cfg.precompute_mask_indices or self.cfg.tpu: assert ( cfg.inferred_w2v_config is not None ), "inferred_w2v_config must be set" return OmegaConf.to_container( cfg.inferred_w2v_config, resolve=True, enum_to_str=True ) else: return {} def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs): data_path = self.cfg.data task_cfg = task_cfg or self.cfg # upgrade old task if isinstance(task_cfg, Namespace): if not hasattr(task_cfg, "autoregressive"): task_cfg.autoregressive = not task_cfg.criterion == "ctc" if getattr(task_cfg, "binarized_dataset", False): self.datasets[split] = BinarizedAudioDataset( data_path, split=split, sample_rate=task_cfg.get("sample_rate", self.cfg.sample_rate), max_sample_size=self.cfg.max_sample_size, min_sample_size=self.cfg.min_sample_size, pad=task_cfg.labels is not None or task_cfg.enable_padding, normalize=task_cfg.normalize, num_buckets=self.cfg.num_batch_buckets or int(self.cfg.tpu), compute_mask_indices=(self.cfg.precompute_mask_indices or self.cfg.tpu), **self._get_mask_precompute_kwargs(task_cfg), ) else: manifest_path = os.path.join(data_path, "{}.tsv".format(split)) self.datasets[split] = FileAudioDataset( manifest_path=manifest_path, sample_rate=task_cfg.get("sample_rate", self.cfg.sample_rate), max_sample_size=self.cfg.max_sample_size, min_sample_size=self.cfg.min_sample_size, pad=task_cfg.labels is not None or task_cfg.enable_padding, normalize=task_cfg.normalize, num_buckets=self.cfg.num_batch_buckets or int(self.cfg.tpu), compute_mask_indices=(self.cfg.precompute_mask_indices or self.cfg.tpu), **self._get_mask_precompute_kwargs(task_cfg), ) if self.cfg.tpu and task_cfg["mask_channel_prob"] == 0.0: logger.info( "Pretraining on TPUs may suffer convergence " "issues when training with `mask_channel_prob` value of " "0. You may want to set this to a low value close to 0." ) if task_cfg.labels: label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}") skipped_indices = getattr(self.datasets[split], "skipped_indices", set()) with open(label_path, "r") as f: labels = [line for i, line in enumerate(f) if i not in skipped_indices] assert len(labels) == len(self.datasets[split]), ( f"labels length ({len(labels)}) and dataset length " f"({len(self.datasets[split])}) do not match" ) process_label = LabelEncoder(self.target_dictionary) self.datasets[split] = AddTargetDataset( self.datasets[split], labels, pad=self.target_dictionary.pad(), eos=self.target_dictionary.eos(), batch_targets=True, process_label=process_label, add_to_input=task_cfg.get("autoregressive", False), ) @property def source_dictionary(self): return None @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.state.target_dictionary def max_positions(self): """Maximum input length supported by the encoder.""" return (sys.maxsize, sys.maxsize) def filter_indices_by_size( self, indices, dataset, max_positions=None, ignore_invalid_inputs=False, ): # we do not need to filter by size in this task as dataloaders take care of this return indices def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if self.cfg.eval_wer and self.cfg.autoregressive: metrics = self._inference_with_wer(self.sequence_generator, sample, model) logging_output["_num_char_errors"] = metrics["num_char_errors"] logging_output["_num_chars"] = metrics["num_chars"] logging_output["_num_word_errors"] = metrics["num_word_errors"] logging_output["_num_words"] = metrics["num_words"] return loss, sample_size, logging_output def build_model(self, model_cfg: FairseqDataclass): model = super().build_model(model_cfg) if self.cfg.eval_wer and self.cfg.autoregressive: self.sequence_generator = self.build_generator( [model], self.cfg.eval_wer_config, ) if self.cfg.eval_wer_tokenizer: self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer) else: self.tokenizer = None actualized_cfg = getattr(model, "cfg", None) if actualized_cfg is not None: if "w2v_args" in actualized_cfg: model_cfg.w2v_args = actualized_cfg.w2v_args return model def _inference_with_wer(self, generator, sample, model): import editdistance def decode(toks): s = self.target_dictionary.string( toks.int().cpu(), self.cfg.eval_wer_post_process, escape_unk=True, ) if self.tokenizer: s = self.tokenizer.decode(s) return s num_word_errors, num_char_errors = 0, 0 num_chars, num_words = 0, 0 gen_out = self.inference_step(generator, [model], sample, None) for i in range(len(gen_out)): hyp = decode(gen_out[i][0]["tokens"]) ref = decode( utils.strip_pad(sample["target"][i], self.target_dictionary.pad()), ) num_char_errors += editdistance.eval(hyp, ref) num_chars += len(ref) hyp_words = hyp.split() ref_words = ref.split() num_word_errors += editdistance.eval(hyp_words, ref_words) num_words += len(ref_words) return { "num_char_errors": num_char_errors, "num_chars": num_chars, "num_word_errors": num_word_errors, "num_words": num_words, } def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) zero = torch.scalar_tensor(0.0) num_char_errors = sum( log.get("_num_char_errors", zero) for log in logging_outputs ) num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs) num_word_errors = sum( log.get("_num_word_errors", zero) for log in logging_outputs ) num_words = sum(log.get("_num_words", zero) for log in logging_outputs) metrics.log_scalar("_num_char_errors", num_char_errors) metrics.log_scalar("_num_chars", num_chars) metrics.log_scalar("_num_word_errors", num_word_errors) metrics.log_scalar("_num_words", num_words) if num_chars > 0: metrics.log_derived( "uer", lambda meters: meters["_num_char_errors"].sum * 100.0 / meters["_num_chars"].sum if meters["_num_chars"].sum > 0 else float("nan"), ) if num_words > 0: metrics.log_derived( "wer", lambda meters: meters["_num_word_errors"].sum * 100.0 / meters["_num_words"].sum if meters["_num_words"].sum > 0 else float("nan"), )