# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from fairseq import utils from fairseq.data import ( Dictionary, IdDataset, MaskTokensDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PrependTokenDataset, RightPadDataset, SortDataset, TokenBlockDataset, data_utils, ) from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("masked_lm") class MaskedLMTask(LegacyFairseqTask): """Task for training masked language models (e.g., BERT, RoBERTa).""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", help="colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner", ) parser.add_argument( "--sample-break-mode", default="complete", choices=["none", "complete", "complete_doc", "eos"], help='If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.', ) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments " "per sample for BERT dataset", ) parser.add_argument( "--mask-prob", default=0.15, type=float, help="probability of replacing a token with mask", ) parser.add_argument( "--leave-unmasked-prob", default=0.1, type=float, help="probability that a masked token is unmasked", ) parser.add_argument( "--random-token-prob", default=0.1, type=float, help="probability of replacing a token with a random token", ) parser.add_argument( "--freq-weighted-replacement", default=False, action="store_true", help="sample random replacement words based on word frequencies", ) parser.add_argument( "--mask-whole-words", default=False, action="store_true", help="mask whole words; you may also want to set --bpe", ) parser.add_argument( "--mask-multiple-length", default=1, type=int, help="repeat the mask indices multiple times", ) parser.add_argument( "--mask-stdev", default=0.0, type=float, help="stdev of the mask length" ) parser.add_argument( "--shorten-method", default="none", choices=["none", "truncate", "random_crop"], help="if not none, shorten sequences that exceed --tokens-per-sample", ) parser.add_argument( "--shorten-data-split-list", default="", help="comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)', ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = dictionary.add_symbol("") @classmethod def setup_task(cls, args, **kwargs): paths = utils.split_paths(args.data) assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) dataset = maybe_shorten_dataset( dataset, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 1, # one less for pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode=self.args.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) # prepend beginning-of-sentence token (, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) # create masked input and targets mask_whole_words = ( get_whole_word_mask(self.args, self.source_dictionary) if self.args.mask_whole_words else None ) src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( dataset, self.source_dictionary, pad_idx=self.source_dictionary.pad(), mask_idx=self.mask_idx, seed=self.args.seed, mask_prob=self.args.mask_prob, leave_unmasked_prob=self.args.leave_unmasked_prob, random_token_prob=self.args.random_token_prob, freq_weighted_replacement=self.args.freq_weighted_replacement, mask_whole_words=mask_whole_words, mask_multiple_length=self.args.mask_multiple_length, mask_stdev=self.args.mask_stdev, ) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_dataset)) self.datasets[split] = SortDataset( NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": RightPadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": RightPadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), ), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_dataset, reduce=True), }, sizes=[src_dataset.sizes], ), sort_order=[ shuffle, src_dataset.sizes, ], ) def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): src_dataset = RightPadDataset( TokenBlockDataset( src_tokens, src_lengths, self.args.tokens_per_sample - 1, # one less for pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), pad_idx=self.source_dictionary.pad(), ) src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) src_dataset = NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": src_dataset, "src_lengths": NumelDataset(src_dataset, reduce=False), }, }, sizes=src_lengths, ) if sort: src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) return src_dataset @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary