freddyaboulton's picture
Add code
cbc2dd6
import spaces
import gradio as gr
import cv2
import tempfile
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained(f'jameslahm/yolov10n')
@spaces.GPU
def yolov10_inference(image, conf_threshold):
width, _ = image.size
import time
start = time.time()
results = model.predict(source=image, imgsz=width, conf=conf_threshold)
end = time.time()
annotated_image = results[0].plot()
print("time", end - start)
return annotated_image[:, :, ::-1]
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
with gr.Blocks(css=css) as app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv10 Webcam Stream
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
</h3>
""")
with gr.Column(elem_classes=["my-column"]):
with gr.Group(elem_classes=["my-group"]):
image = gr.Image(type="pil", label="Image", sources="webcam")
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.30,
)
image.stream(
fn=yolov10_inference,
inputs=[image, conf_threshold],
outputs=[image],
stream_every=0.1,
time_limit=30
)
if __name__ == '__main__':
app.launch()