aliabd HF staff commited on
Commit
0e7cefd
·
1 Parent(s): c26dc7e

Upload with huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +7 -8
  2. requirements.txt +4 -0
  3. run.ipynb +1 -0
  4. run.py +22 -0
README.md CHANGED
@@ -1,12 +1,11 @@
 
1
  ---
2
- title: Diffusers With Batching Main
3
- emoji: 👁
4
- colorFrom: gray
5
- colorTo: gray
6
  sdk: gradio
7
- sdk_version: 3.18.0
8
- app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+
2
  ---
3
+ title: diffusers_with_batching_main
4
+ emoji: 🔥
5
+ colorFrom: indigo
6
+ colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 3.18.1b7
9
+ app_file: run.py
10
  pinned: false
11
  ---
 
 
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ diffusers
4
+ https://gradio-main-build.s3.amazonaws.com/56245276e701f7e4f81228af6e523d4c305af4ed/gradio-3.18.1b7-py3-none-any.whl
run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: diffusers_with_batching"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers diffusers"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import torch\n", "from diffusers import DiffusionPipeline\n", "import gradio as gr\n", "\n", "generator = DiffusionPipeline.from_pretrained(\"CompVis/ldm-text2im-large-256\")\n", "# move to GPU if available\n", "if torch.cuda.is_available():\n", " generator = generator.to(\"cuda\")\n", "\n", "def generate(prompts):\n", " images = generator(list(prompts)).images\n", " return [images]\n", "\n", "demo = gr.Interface(generate, \n", " \"textbox\", \n", " \"image\", \n", " batch=True, \n", " max_batch_size=4 # Set the batch size based on your CPU/GPU memory\n", ").queue()\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import DiffusionPipeline
3
+ import gradio as gr
4
+
5
+ generator = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
6
+ # move to GPU if available
7
+ if torch.cuda.is_available():
8
+ generator = generator.to("cuda")
9
+
10
+ def generate(prompts):
11
+ images = generator(list(prompts)).images
12
+ return [images]
13
+
14
+ demo = gr.Interface(generate,
15
+ "textbox",
16
+ "image",
17
+ batch=True,
18
+ max_batch_size=4 # Set the batch size based on your CPU/GPU memory
19
+ ).queue()
20
+
21
+ if __name__ == "__main__":
22
+ demo.launch()