Upload folder using huggingface_hub
Browse files- requirements.txt +2 -2
- run.ipynb +1 -1
- run.py +5 -5
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-builds.s3.amazonaws.com/
|
3 |
torch
|
4 |
transformers
|
5 |
diffusers
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@9b42ba8f1006c05d60a62450d3036ce0d6784f86#subdirectory=client/python
|
2 |
+
https://gradio-builds.s3.amazonaws.com/9b42ba8f1006c05d60a62450d3036ce0d6784f86/gradio-4.39.0-py3-none-any.whl
|
3 |
torch
|
4 |
transformers
|
5 |
diffusers
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: diffusers_with_batching"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers diffusers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import torch\n", "from diffusers import DiffusionPipeline # type: ignore\n", "import gradio as gr\n", "\n", "generator = DiffusionPipeline.from_pretrained(\"CompVis/ldm-text2im-large-256\")\n", "# move to GPU if available\n", "if torch.cuda.is_available():\n", " generator = generator.to(\"cuda\")\n", "\n", "def generate(prompts):\n", " images = generator(list(prompts)).images # type: ignore\n", " return [images]\n", "\n", "demo = gr.Interface(generate
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: diffusers_with_batching"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers diffusers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import torch\n", "from diffusers import DiffusionPipeline # type: ignore\n", "import gradio as gr\n", "\n", "generator = DiffusionPipeline.from_pretrained(\"CompVis/ldm-text2im-large-256\")\n", "# move to GPU if available\n", "if torch.cuda.is_available():\n", " generator = generator.to(\"cuda\")\n", "\n", "def generate(prompts):\n", " images = generator(list(prompts)).images # type: ignore\n", " return [images]\n", "\n", "demo = gr.Interface(generate,\n", " \"textbox\",\n", " \"image\",\n", " batch=True,\n", " max_batch_size=4 # Set the batch size based on your CPU/GPU memory\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -11,12 +11,12 @@ def generate(prompts):
|
|
11 |
images = generator(list(prompts)).images # type: ignore
|
12 |
return [images]
|
13 |
|
14 |
-
demo = gr.Interface(generate,
|
15 |
-
"textbox",
|
16 |
-
"image",
|
17 |
-
batch=True,
|
18 |
max_batch_size=4 # Set the batch size based on your CPU/GPU memory
|
19 |
-
)
|
20 |
|
21 |
if __name__ == "__main__":
|
22 |
demo.launch()
|
|
|
11 |
images = generator(list(prompts)).images # type: ignore
|
12 |
return [images]
|
13 |
|
14 |
+
demo = gr.Interface(generate,
|
15 |
+
"textbox",
|
16 |
+
"image",
|
17 |
+
batch=True,
|
18 |
max_batch_size=4 # Set the batch size based on your CPU/GPU memory
|
19 |
+
)
|
20 |
|
21 |
if __name__ == "__main__":
|
22 |
demo.launch()
|