import torch from diffusers import DiffusionPipeline # type: ignore import gradio as gr generator = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") # move to GPU if available if torch.cuda.is_available(): generator = generator.to("cuda") def generate(prompts): images = generator(list(prompts)).images # type: ignore return [images] demo = gr.Interface(generate, "textbox", "image", batch=True, max_batch_size=4 # Set the batch size based on your CPU/GPU memory ) if __name__ == "__main__": demo.launch()