aliabd HF Staff commited on
Commit
2f1eca1
·
1 Parent(s): 9f89757

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +1 -1
  2. requirements.txt +1 -1
  3. run.ipynb +1 -1
  4. run.py +0 -2
README.md CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
- sdk_version: 3.50.2
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
 
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 4.0.2
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- https://gradio-builds.s3.amazonaws.com/5524e590577769b0444a5332b8d444aafb0c5c12/gradio-3.50.2-py3-none-any.whl
2
  pandas
 
1
+ https://gradio-builds.s3.amazonaws.com/874005938d65543c4cefe610a17e58d2ec7b3fb1/gradio-4.0.2-py3-none-any.whl
2
  pandas
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fraud_detector"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio pandas"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/fraud_detector/fraud.csv"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import random\n", "import os\n", "import gradio as gr\n", "\n", "\n", "def fraud_detector(card_activity, categories, sensitivity):\n", " activity_range = random.randint(0, 100)\n", " drop_columns = [\n", " column for column in [\"retail\", \"food\", \"other\"] if column not in categories\n", " ]\n", " if len(drop_columns):\n", " card_activity.drop(columns=drop_columns, inplace=True)\n", " return (\n", " card_activity,\n", " card_activity,\n", " {\"fraud\": activity_range / 100.0, \"not fraud\": 1 - activity_range / 100.0},\n", " )\n", "\n", "\n", "demo = gr.Interface(\n", " fraud_detector,\n", " [\n", " gr.Timeseries(x=\"time\", y=[\"retail\", \"food\", \"other\"]),\n", " gr.CheckboxGroup(\n", " [\"retail\", \"food\", \"other\"], value=[\"retail\", \"food\", \"other\"]\n", " ),\n", " gr.Slider(1, 3),\n", " ],\n", " [\n", " \"dataframe\",\n", " gr.Timeseries(x=\"time\", y=[\"retail\", \"food\", \"other\"]),\n", " gr.Label(label=\"Fraud Level\"),\n", " ],\n", " examples=[\n", " [os.path.join(os.path.abspath(''), \"fraud.csv\"), [\"retail\", \"food\", \"other\"], 1.0],\n", " ],\n", ")\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fraud_detector"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio pandas"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/fraud_detector/fraud.csv"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import random\n", "import os\n", "import gradio as gr\n", "\n", "\n", "def fraud_detector(card_activity, categories, sensitivity):\n", " activity_range = random.randint(0, 100)\n", " drop_columns = [\n", " column for column in [\"retail\", \"food\", \"other\"] if column not in categories\n", " ]\n", " if len(drop_columns):\n", " card_activity.drop(columns=drop_columns, inplace=True)\n", " return (\n", " card_activity,\n", " card_activity,\n", " {\"fraud\": activity_range / 100.0, \"not fraud\": 1 - activity_range / 100.0},\n", " )\n", "\n", "\n", "demo = gr.Interface(\n", " fraud_detector,\n", " [\n", " gr.CheckboxGroup(\n", " [\"retail\", \"food\", \"other\"], value=[\"retail\", \"food\", \"other\"]\n", " ),\n", " gr.Slider(1, 3),\n", " ],\n", " [\n", " \"dataframe\",\n", " gr.Label(label=\"Fraud Level\"),\n", " ],\n", " examples=[\n", " [os.path.join(os.path.abspath(''), \"fraud.csv\"), [\"retail\", \"food\", \"other\"], 1.0],\n", " ],\n", ")\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -20,7 +20,6 @@ def fraud_detector(card_activity, categories, sensitivity):
20
  demo = gr.Interface(
21
  fraud_detector,
22
  [
23
- gr.Timeseries(x="time", y=["retail", "food", "other"]),
24
  gr.CheckboxGroup(
25
  ["retail", "food", "other"], value=["retail", "food", "other"]
26
  ),
@@ -28,7 +27,6 @@ demo = gr.Interface(
28
  ],
29
  [
30
  "dataframe",
31
- gr.Timeseries(x="time", y=["retail", "food", "other"]),
32
  gr.Label(label="Fraud Level"),
33
  ],
34
  examples=[
 
20
  demo = gr.Interface(
21
  fraud_detector,
22
  [
 
23
  gr.CheckboxGroup(
24
  ["retail", "food", "other"], value=["retail", "food", "other"]
25
  ),
 
27
  ],
28
  [
29
  "dataframe",
 
30
  gr.Label(label="Fraud Level"),
31
  ],
32
  examples=[