aliabd HF staff commited on
Commit
1fc36c8
1 Parent(s): 2e4a9b8

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. run.ipynb +1 -1
  2. run.py +4 -4
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_classification\n", "### Simple image classification in Pytorch with Gradio's Image input and Label output.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchvision"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/image_classification/cheetah.jpg"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import torch\n", "import requests\n", "from torchvision import transforms\n", "\n", "model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()\n", "response = requests.get(\"https://git.io/JJkYN\")\n", "labels = response.text.split(\"\\n\")\n", "\n", "def predict(inp):\n", " inp = transforms.ToTensor()(inp).unsqueeze(0)\n", " with torch.no_grad():\n", " prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)\n", " confidences = {labels[i]: float(prediction[i]) for i in range(1000)} \n", " return confidences\n", "\n", "demo = gr.Interface(fn=predict, \n", " inputs=gr.Image(type=\"pil\"),\n", " outputs=gr.Label(num_top_classes=3),\n", " examples=[[\"cheetah.jpg\"]],\n", " )\n", " \n", "demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_classification\n", "### Simple image classification in Pytorch with Gradio's Image input and Label output.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchvision"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/image_classification/cheetah.jpg"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import torch\n", "import requests\n", "from torchvision import transforms\n", "\n", "model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()\n", "response = requests.get(\"https://git.io/JJkYN\")\n", "labels = response.text.split(\"\\n\")\n", "\n", "def predict(inp):\n", " inp = transforms.ToTensor()(inp).unsqueeze(0)\n", " with torch.no_grad():\n", " prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)\n", " confidences = {labels[i]: float(prediction[i]) for i in range(1000)}\n", " return confidences\n", "\n", "demo = gr.Interface(fn=predict,\n", " inputs=gr.Image(type=\"pil\"),\n", " outputs=gr.Label(num_top_classes=3),\n", " examples=[[\"cheetah.jpg\"]],\n", " )\n", "\n", "demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -11,13 +11,13 @@ def predict(inp):
11
  inp = transforms.ToTensor()(inp).unsqueeze(0)
12
  with torch.no_grad():
13
  prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
14
- confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
15
  return confidences
16
 
17
- demo = gr.Interface(fn=predict,
18
  inputs=gr.Image(type="pil"),
19
  outputs=gr.Label(num_top_classes=3),
20
  examples=[["cheetah.jpg"]],
21
  )
22
-
23
- demo.launch()
 
11
  inp = transforms.ToTensor()(inp).unsqueeze(0)
12
  with torch.no_grad():
13
  prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
14
+ confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
15
  return confidences
16
 
17
+ demo = gr.Interface(fn=predict,
18
  inputs=gr.Image(type="pil"),
19
  outputs=gr.Label(num_top_classes=3),
20
  examples=[["cheetah.jpg"]],
21
  )
22
+
23
+ demo.launch()