Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,509 Bytes
496bf8a efcdb1c ab3a30c 2acc3a1 ab3a30c 496bf8a ab3a30c e85fa31 2acc3a1 72c65b6 ab3a30c efcdb1c ab3a30c 72c65b6 d86bc7f 290deb7 ab3a30c 290deb7 496bf8a 82022e9 496bf8a ab3a30c 2acc3a1 d86bc7f 2acc3a1 f8e42c7 2acc3a1 d86bc7f 72c65b6 2acc3a1 c8a6713 ee4aecd 05fedf7 c8a6713 2acc3a1 05fedf7 2acc3a1 05fedf7 2acc3a1 05fedf7 2acc3a1 ab3a30c a7c5b39 ab3a30c 2acc3a1 ab3a30c 73ce57b c3db1ad 2acc3a1 c3db1ad 2acc3a1 d86bc7f 2acc3a1 ab3a30c 05fedf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import io
import math
from threading import Thread
import random
import numpy as np
import spaces
import gradio as gr
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from huggingface_hub import InferenceClient
from streamer import ParlerTTSStreamer
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.float16 if device != "cpu" else torch.float32
repo_id = "parler-tts/parler_tts_mini_v0.1"
jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H"
model = ParlerTTSForConditionalGeneration.from_pretrained(
jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
).to(device)
client = InferenceClient()
tokenizer = AutoTokenizer.from_pretrained(repo_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
def numpy_to_mp3(audio_array, sampling_rate):
# Normalize audio_array if it's floating-point
if np.issubdtype(audio_array.dtype, np.floating):
max_val = np.max(np.abs(audio_array))
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
audio_array = audio_array.astype(np.int16)
# Create an audio segment from the numpy array
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_array.dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate
@spaces.GPU
def generate_base(audio):
question = client.audtomatic_speech_recognition(audio)
messages = [{"role": "sytem", "content": ("You are a magic 8 ball."
"Someone will present to you a situation or question and your job "
"is to answer with a cryptic addage or proverb such as "
"'curiosity killed the cat' or 'The early bird gets the worm'.")},
{"role": "user", "content": f"Please tell me what to do about {question}"}]
response = client.chat_completion(messages, max_tokens=1024, seed=random.randint(1, 5000))
response = response.choices[0].message.content
play_steps_in_s = 1.0
play_steps = int(frame_rate * play_steps_in_s)
description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality."
description_tokens = tokenizer(description, return_tensors="pt").to(device)
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
prompt = tokenizer(sentence, return_tensors="pt").to(device)
generation_kwargs = dict(
input_ids=description_tokens.input_ids,
prompt_input_ids=prompt.input_ids,
streamer=streamer,
do_sample=True,
temperature=1.0,
min_new_tokens=10,
)
set_seed(SEED)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
for new_audio in streamer:
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
with gr.Blocks() as block:
gr.HTML(
f"""
<h1 style='text-align: center;'> Magic 8 Ball 🎱 </h1>
<p style='text-align: center;'> Powered by <a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a>
"""
)
with gr.Group():
with gr.Row():
audio_out = gr.Audio(visble=False, streaming=True)
answer = gr.Textbox(label="Answer")
with gr.Row():
audio_in = gr.Audio(label="Speak you question", sources="microphone", format="filepath")
audio_in.stop_recording(fn=generate_base, inputs=audio_in, outputs=[answer, audio_out])
block.launch()
|