Spaces:
Building
on
Zero
Building
on
Zero
Commit
·
790227b
1
Parent(s):
66947f7
format
Browse files
app.py
CHANGED
|
@@ -8,10 +8,13 @@ from PIL import Image, ImageDraw, ImageFont
|
|
| 8 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
| 9 |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
| 10 |
|
|
|
|
| 11 |
def draw_bounding_boxes(image, results, model, threshold=0.3):
|
| 12 |
draw = ImageDraw.Draw(image)
|
| 13 |
for result in results:
|
| 14 |
-
for score, label_id, box in zip(
|
|
|
|
|
|
|
| 15 |
if score > threshold:
|
| 16 |
label = model.config.id2label[label_id.item()]
|
| 17 |
box = [round(i) for i in box.tolist()]
|
|
@@ -22,13 +25,14 @@ def draw_bounding_boxes(image, results, model, threshold=0.3):
|
|
| 22 |
|
| 23 |
@spaces.GPU
|
| 24 |
def inference(image, conf_threshold):
|
| 25 |
-
|
| 26 |
inputs = image_processor(images=image, return_tensors="pt")
|
| 27 |
|
| 28 |
with torch.no_grad():
|
| 29 |
outputs = model(**inputs)
|
| 30 |
|
| 31 |
-
results = image_processor.post_process_object_detection(
|
|
|
|
|
|
|
| 32 |
|
| 33 |
return draw_bounding_boxes(image, results, model, threshold=conf_threshold)
|
| 34 |
|
|
@@ -37,7 +41,14 @@ def app():
|
|
| 37 |
with gr.Blocks():
|
| 38 |
with gr.Row():
|
| 39 |
with gr.Column():
|
| 40 |
-
image = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
conf_threshold = gr.Slider(
|
| 42 |
label="Confidence Threshold",
|
| 43 |
minimum=0.0,
|
|
@@ -50,10 +61,11 @@ def app():
|
|
| 50 |
inputs=[image, conf_threshold],
|
| 51 |
outputs=[image],
|
| 52 |
stream_every=0.2,
|
| 53 |
-
time_limit=30
|
| 54 |
)
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
| 58 |
|
| 59 |
with gr.Blocks(css=css) as app:
|
|
@@ -62,16 +74,25 @@ with gr.Blocks(css=css) as app:
|
|
| 62 |
<h1 style='text-align: center'>
|
| 63 |
Near Real-Time Webcam Stream with RT-DETR
|
| 64 |
</h1>
|
| 65 |
-
"""
|
|
|
|
| 66 |
gr.HTML(
|
| 67 |
"""
|
| 68 |
<h3 style='text-align: center'>
|
| 69 |
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://github.com/lyuwenyu/RT-DETR' target='_blank'>github</a>
|
| 70 |
</h3>
|
| 71 |
-
"""
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
conf_threshold = gr.Slider(
|
| 76 |
label="Confidence Threshold",
|
| 77 |
minimum=0.0,
|
|
@@ -84,7 +105,7 @@ with gr.Blocks(css=css) as app:
|
|
| 84 |
inputs=[image, conf_threshold],
|
| 85 |
outputs=[image],
|
| 86 |
stream_every=0.2,
|
| 87 |
-
time_limit=30
|
| 88 |
)
|
| 89 |
-
if __name__ ==
|
| 90 |
app.launch()
|
|
|
|
| 8 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
| 9 |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
| 10 |
|
| 11 |
+
|
| 12 |
def draw_bounding_boxes(image, results, model, threshold=0.3):
|
| 13 |
draw = ImageDraw.Draw(image)
|
| 14 |
for result in results:
|
| 15 |
+
for score, label_id, box in zip(
|
| 16 |
+
result["scores"], result["labels"], result["boxes"]
|
| 17 |
+
):
|
| 18 |
if score > threshold:
|
| 19 |
label = model.config.id2label[label_id.item()]
|
| 20 |
box = [round(i) for i in box.tolist()]
|
|
|
|
| 25 |
|
| 26 |
@spaces.GPU
|
| 27 |
def inference(image, conf_threshold):
|
|
|
|
| 28 |
inputs = image_processor(images=image, return_tensors="pt")
|
| 29 |
|
| 30 |
with torch.no_grad():
|
| 31 |
outputs = model(**inputs)
|
| 32 |
|
| 33 |
+
results = image_processor.post_process_object_detection(
|
| 34 |
+
outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3
|
| 35 |
+
)
|
| 36 |
|
| 37 |
return draw_bounding_boxes(image, results, model, threshold=conf_threshold)
|
| 38 |
|
|
|
|
| 41 |
with gr.Blocks():
|
| 42 |
with gr.Row():
|
| 43 |
with gr.Column():
|
| 44 |
+
image = gr.Image(
|
| 45 |
+
type="pil",
|
| 46 |
+
label="Image",
|
| 47 |
+
visible=True,
|
| 48 |
+
sources="webcam",
|
| 49 |
+
height=500,
|
| 50 |
+
width=500,
|
| 51 |
+
)
|
| 52 |
conf_threshold = gr.Slider(
|
| 53 |
label="Confidence Threshold",
|
| 54 |
minimum=0.0,
|
|
|
|
| 61 |
inputs=[image, conf_threshold],
|
| 62 |
outputs=[image],
|
| 63 |
stream_every=0.2,
|
| 64 |
+
time_limit=30,
|
| 65 |
)
|
| 66 |
|
| 67 |
+
|
| 68 |
+
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
| 69 |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
| 70 |
|
| 71 |
with gr.Blocks(css=css) as app:
|
|
|
|
| 74 |
<h1 style='text-align: center'>
|
| 75 |
Near Real-Time Webcam Stream with RT-DETR
|
| 76 |
</h1>
|
| 77 |
+
"""
|
| 78 |
+
)
|
| 79 |
gr.HTML(
|
| 80 |
"""
|
| 81 |
<h3 style='text-align: center'>
|
| 82 |
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://github.com/lyuwenyu/RT-DETR' target='_blank'>github</a>
|
| 83 |
</h3>
|
| 84 |
+
"""
|
| 85 |
+
)
|
| 86 |
+
with gr.Column(elem_classes=["my-column"]):
|
| 87 |
+
with gr.Group(elem_classes=["my-group"]):
|
| 88 |
+
image = gr.Image(
|
| 89 |
+
type="pil",
|
| 90 |
+
label="Image",
|
| 91 |
+
visible=True,
|
| 92 |
+
sources="webcam",
|
| 93 |
+
height=500,
|
| 94 |
+
width=500,
|
| 95 |
+
)
|
| 96 |
conf_threshold = gr.Slider(
|
| 97 |
label="Confidence Threshold",
|
| 98 |
minimum=0.0,
|
|
|
|
| 105 |
inputs=[image, conf_threshold],
|
| 106 |
outputs=[image],
|
| 107 |
stream_every=0.2,
|
| 108 |
+
time_limit=30,
|
| 109 |
)
|
| 110 |
+
if __name__ == "__main__":
|
| 111 |
app.launch()
|