File size: 6,527 Bytes
d0ba97a 0af320d d0ba97a 0af320d 447a04b d0ba97a 0af320d d0ba97a 0af320d 84126a5 0af320d 1edbb65 84126a5 0af320d d0ba97a 0af320d d0ba97a 4c1c8f0 812f937 4c1c8f0 d0ba97a 0af320d d0ba97a 0af320d c4619f6 0af320d d0ba97a 0af320d 84126a5 d0ba97a 84126a5 ca007eb d0ba97a 84126a5 d0ba97a 84126a5 0af320d d0ba97a 0af320d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# URL: https://huggingface.co/spaces/gradio/xgboost-income-prediction-with-explainability
# imports
import gradio as gr
import random
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import shap
import xgboost as xgb
from datasets import load_dataset
# loading the model and setting up
matplotlib.use("Agg")
dataset = load_dataset("scikit-learn/adult-census-income")
X_train = dataset["train"].to_pandas()
_ = X_train.pop("fnlwgt")
_ = X_train.pop("race")
y_train = X_train.pop("income")
y_train = (y_train == ">50K").astype(int)
categorical_columns = [
"workclass",
"education",
"marital.status",
"occupation",
"relationship",
"sex",
"native.country",
]
X_train = X_train.astype({col: "category" for col in categorical_columns})
data = xgb.DMatrix(X_train, label=y_train, enable_categorical=True)
model = xgb.train(params={"objective": "binary:logistic"}, dtrain=data)
explainer = shap.TreeExplainer(model)
# defining the two core fns
def predict(*args):
df = pd.DataFrame([args], columns=X_train.columns)
df = df.astype({col: "category" for col in categorical_columns})
pos_pred = model.predict(xgb.DMatrix(df, enable_categorical=True))
return {">50K": float(pos_pred[0]), "<=50K": 1 - float(pos_pred[0])}
def interpret(*args):
df = pd.DataFrame([args], columns=X_train.columns)
df = df.astype({col: "category" for col in categorical_columns})
shap_values = explainer.shap_values(xgb.DMatrix(df, enable_categorical=True))
scores_desc = list(zip(shap_values[0], X_train.columns))
scores_desc = sorted(scores_desc)
fig_m = plt.figure(tight_layout=True)
plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
plt.title("Feature Shap Values")
plt.ylabel("Feature")
plt.xlabel("Shap Value")
plt.tight_layout()
return fig_m
unique_class = sorted(X_train["workclass"].unique())
unique_education = sorted(X_train["education"].unique())
unique_marital_status = sorted(X_train["marital.status"].unique())
unique_relationship = sorted(X_train["relationship"].unique())
unique_occupation = sorted(X_train["occupation"].unique())
unique_sex = sorted(X_train["sex"].unique())
unique_country = sorted(X_train["native.country"].unique())
# starting the block
with gr.Blocks() as demo:
# defining text on the page
gr.Markdown("""
**Income Classification with XGBoost 💰**: This demo uses an XGBoost classifier predicts income based on demographic factors, along with Shapley value-based *explanations*. The [source code for this Gradio demo is here](https://huggingface.co/spaces/gradio/xgboost-income-prediction-with-explainability/blob/main/app.py).
""")
# defining the layout
with gr.Row():
with gr.Column():
# defining the inputs
age = gr.Slider(label="Age", minimum=17, maximum=90, step=1, randomize=True)
work_class = gr.Dropdown(
label="Workclass",
choices=unique_class,
value=lambda: random.choice(unique_class),
)
education = gr.Dropdown(
label="Education Level",
choices=unique_education,
value=lambda: random.choice(unique_education),
)
years = gr.Slider(
label="Years of schooling",
minimum=1,
maximum=16,
step=1,
randomize=True,
)
marital_status = gr.Dropdown(
label="Marital Status",
choices=unique_marital_status,
value=lambda: random.choice(unique_marital_status),
)
occupation = gr.Dropdown(
label="Occupation",
choices=unique_occupation,
value=lambda: random.choice(unique_occupation),
)
relationship = gr.Dropdown(
label="Relationship Status",
choices=unique_relationship,
value=lambda: random.choice(unique_relationship),
)
sex = gr.Dropdown(
label="Sex", choices=unique_sex, value=lambda: random.choice(unique_sex)
)
capital_gain = gr.Slider(
label="Capital Gain",
minimum=0,
maximum=100000,
step=500,
randomize=True,
)
capital_loss = gr.Slider(
label="Capital Loss", minimum=0, maximum=10000, step=500, randomize=True
)
hours_per_week = gr.Slider(
label="Hours Per Week Worked", minimum=1, maximum=99, step=1
)
country = gr.Dropdown(
label="Native Country",
choices=unique_country,
value=lambda: random.choice(unique_country),
)
with gr.Column():
# defining the outputs
label = gr.Label()
plot = gr.Plot()
with gr.Row():
# defining the buttons
predict_btn = gr.Button(value="Predict")
interpret_btn = gr.Button(value="Explain")
# defining the fn that will run when predict is clicked, what it will get as inputs, and which output it will update
predict_btn.click(
predict,
inputs=[
age,
work_class,
education,
years,
marital_status,
occupation,
relationship,
sex,
capital_gain,
capital_loss,
hours_per_week,
country,
],
outputs=[label],
)
# defining the fn that will run when interpret is clicked, what it will get as inputs, and which output it will update
interpret_btn.click(
interpret,
inputs=[
age,
work_class,
education,
years,
marital_status,
occupation,
relationship,
sex,
capital_gain,
capital_loss,
hours_per_week,
country,
],
outputs=[plot],
)
# launch
demo.launch()
|