File size: 12,002 Bytes
35fa5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# launch app
# streamlit run "survey_analytics_streamlit.py"

# imports
import streamlit as st
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

# factor analysis
from factor_analyzer import FactorAnalyzer
from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
from factor_analyzer.factor_analyzer import calculate_kmo
from scipy.stats import zscore

# nlp
from bertopic import BERTopic

# custom
import survey_analytics_library as LIB

st.set_page_config(layout='wide')

# define data file path
data_path = 'data' + os.sep
# define model file path
model_path = 'models' + os.sep

# load all data and models
@st.cache
def read_survey_data():
    data_survey = pd.read_csv(data_path+'bfi_sample_answers.csv')
    data_questions = pd.read_csv(data_path+'bfi_sample_questions.csv')
    return data_survey, data_questions
data_survey, data_questions = read_survey_data()

@st.cache
def read_tweet_data():
    tokyo = pd.read_csv(data_path+'tokyo_olympics_tweets.csv')
    return tokyo
tokyo = read_tweet_data()

@st.cache(allow_output_mutation=True)
def load_bertopic_model_unclean():
    topic_model = BERTopic.load(model_path+'bertopic_model_tokyo_olympics_tweets_unclean')
    return topic_model
topic_model_unclean = load_bertopic_model_unclean()

@st.cache(allow_output_mutation=True)
def load_bertopic_model():
    topic_model = BERTopic.load(model_path+'bertopic_model_tokyo_olympics_tweets')
    return topic_model
topic_model = load_bertopic_model()

@st.cache
def read_topic_results():
    topic_results = pd.read_csv(data_path+'topic_results.csv')
    return topic_results
topic_results = read_topic_results()

# write title of app
st.title('DACoP - Survey Analytics')
st.markdown('''---''')



st.header('Clustering Survey Responders')
st.write('''
    Having knowledge about different groups of responders can help us to customise our interactions with them.  
    E.g. Within the Financial Institutions we have banks, insurers, and payment services.   
    We want to be able to cluster survey reponders into various groups based on how their answers.  
    This can be achieved though **Factor Analysis**.   
    ''')
st.write('\n')
st.write('\n')

# copy daya
df_factor_analysis = data_survey.copy()

st.subheader('Sample Survey Data')
st.write('''
    Here we have a sample survey dataset where responders answer questions about their personality traits on a scale from 1 (Very Inaccurate) to 6 (Very Accurate).  
    Factor Analysis gives us \'factors\' or groups of responders into groups can provide us insights about the different personalities of the responders.  
    ''')

# split page into two columns
# display survey questions and responses as dataframes
col1, col2 = st.columns(2)
with col1:
    st.write('Survey Questions')
    st.dataframe(data_questions)
with col2:
    st.write('Survey Answers')
    st.dataframe(df_factor_analysis)
st.write('\n')
st.write('\n')

st.subheader('Factor Analysis Suitability')
st.write('''
    Before performing Factor Analysis on the data, we need to evaluate if it is suitable to do so.  
    We apply two statistical tests (Bartlett's and KMO test) the data. 
    ''')

# interactive button to run statistical test to determine suitability for factor analysis
if st.button('Run Tests'):
    # Test with the null hypothesis that the correlation matrix is an identity matrix
    bartlett_sphericity_stat, p_value = calculate_bartlett_sphericity(x=df_factor_analysis)
    # Test how predictable of a variable by others
    kmo_per_variable, kmo_total = calculate_kmo(x=df_factor_analysis)
    st.write(f'''
        The P Value from Bartlett\'s Test (suitability is less than 0.05): **{round(p_value, 2)}**  
        The Value from KMO Test (suitability is more than 0.60): **{round(kmo_total, 2)}**  
        ''')
    fa_stat_test = 'Failed'

    if p_value < 0.05 and kmo_total >= 0.6:
        fa_stat_test = 'Passed'

    st.success(f'Our data has **{fa_stat_test}** the two statistical tests!')

st.write('\n')
st.write('\n')

# define factor analyser model
fa = FactorAnalyzer()
# fit data
fa.fit(X=df_factor_analysis)

# get eigenvalues
eigenvalues, _ = fa.get_eigenvalues()
# get number of eigenvalues more than or equal to 1
optimal_factors = len([value for value in eigenvalues if value >= 1])
# store eigenvalues and number of clusters into a df for plotly
scree_df = pd.DataFrame({'Eigenvalues':eigenvalues, 'Number of Factors':list(range(1, len(eigenvalues)+1))}) 

st.subheader('Number of Clusters?')
st.write(f'''
    How many clusters or factors are appropriate for our data?  
    For Factor Analysis, we can determine the number of factors using the Kaiser criterion and a Scree Plot.  
    We should include factors with an Eigenvalue of at least 1.0.  
    ''')

# plot scree plot
fig = px.line(
    scree_df,
    x='Number of Factors', 
    y='Eigenvalues',
    markers=True,
    title='Scree Plot for Kaiser Criterion',
    template='simple_white',
    width=800,
    height=500,
    )
fig.add_hline(y=1, line_width=3, line_color='darkgreen')
st.plotly_chart(fig, use_container_width=True)
st.write(f'''
    Kaiser criterion is one of many guides to determine the number of factors, ultimately the decision on the number of factors to use is best decided by the user based on their use case.  
    ''')

with st.form('num_factor_form'):
    user_num_factors = st.number_input('Enter desired number of factors:', min_value=1, max_value=10, value=6)
    optimal_factors = user_num_factors
    submit = st.form_submit_button('Run Factor Analysis')

st.write('\n')
st.write('\n')

# define factor analyser model
fa = FactorAnalyzer(n_factors=optimal_factors, rotation='varimax')
# fit data
fa.fit(df_factor_analysis)
# generate factor loadings
loads_df = pd.DataFrame(fa.loadings_, index=df_factor_analysis.columns)

transformed_df = fa.fit_transform(df_factor_analysis)
transformed_df = pd.DataFrame(transformed_df)
transformed_df.columns = ['factor_'+str(col) for col in list(transformed_df)]

responder_factors = transformed_df.copy()
responder_factors['cluster'] = responder_factors.apply(lambda s: s.argmax(), axis=1)

# list of factor columns
list_of_factor_cols = [col for col in responder_factors.columns if 'factor_' in col]
st.subheader('Fator Analysis Results')
st.write('''
    Factor analysis gives us a loading for every factor for each responder.  
    We assign each responder to a factor or cluster based on their maximum loading across all the factors.  
    ''')
# highlight factor with max loadings
st.dataframe(responder_factors.style.highlight_max(axis=1, subset=list_of_factor_cols, props='color:white; background-color:green;').format(precision=2))
st.write('\n')

fa_clusters = df_factor_analysis.copy().reset_index(drop=True)
fa_clusters['cluster'] = responder_factors['cluster']
fa_z_scores = df_factor_analysis.copy().reset_index(drop=True)
fa_z_scores = fa_z_scores.apply(zscore)
fa_z_scores['cluster'] = responder_factors['cluster']
fa_z_scores = fa_z_scores.groupby('cluster').mean().reset_index()
fa_z_scores = fa_z_scores.apply(lambda x: round(x, 2))

cm = sns.light_palette('green', as_cmap=True)
list_of_question_cols = list(fa_z_scores.iloc[:,1:])
st.write('''
    Aggregating the scores of the clusters gives us detail insights to the personality traits of the responders.  
    The scores here have been normalised to Z-scores, a measure of how many standard deviations (SD) is the score away from the mean.  
    E.g. A Z-score of 0 indicates the score is identical to the mean, while a Z-score of 1 indicates the score is 1 SD away from the mean.  
    ''')
st.dataframe(fa_z_scores.style.background_gradient(cmap=cm, subset=list_of_question_cols).format(precision=2))
st.write('\n')

cluster_counts = fa_clusters['cluster'].value_counts().reset_index()
cluster_counts = cluster_counts.rename(columns={'index':'Cluster', 'cluster':'Count'})

st.write('''
    Lastly, we can visualise the distribution of responders in each cluster.  
    ''')
fig = px.pie(
    cluster_counts,
    values='Count', 
    names='Cluster', 
    hole=0.35,
    title='Percentage of Responders in Each Cluster',
    template='simple_white',
    width=1000,
    height=600,
    )
st.plotly_chart(fig, use_container_width=True)
st.markdown('''---''')






st.header('Uncovering Topics from Text Responses')
st.write('''
    With feedback forms or open-ended survey questions, we want to know what are the responders generally talking about.  
    One way would be to manually read all the collected response to get a sense of the topics within, however, this is very manual and subjective.  
    Using **Topic Modelling**, we can programmatically extract common topics with the help of machine learning.  
    ''')
st.write('\n')

st.write('''
    Here we have 10,000 tweets from the Tokyo Olympics, going through them manually and coming up with topics would not be practical.  
    ''')
st.dataframe(tokyo)
st.write('\n')
st.write('\n')

st.write('''
    Lets generate some topics without performing any cleaning to the data.  
    ''')
st.write('\n')

fig = LIB.visualize_barchart_titles(
    topic_model=topic_model_unclean,
    subplot_titles=None,
    n_words=5,
    top_n_topics=8,
    height=300
)
st.plotly_chart(fig, use_container_width=True)

st.write('''
    From the chart above, we can see that 'Topic 1' and 'Topic 3' have some words that are not as meaningful.  
    For 'Topic 1', we already know that the tweets are about the Tokyo 2020 Olympics, having a topic for that isn't helpful.  
    'Tokyo', '2020', etc., we refer to these as *stopwords*, and lets remove them and regenerate the topics.  
    ''')
st.write('\n')

labelled_topics = [
    'Mirabai Chanu (Indian Weightlifter)',
    'Hockey',
    'Barbra Banda (Zambian Football Player)',
    'Sutirtha Mukherjee (Indian Table Tennis Player)',
    'Vikas Krishan (Indian Boxer)',
    'Road Race',
    'Brendon Smith (Australian Swimmer)',
    'Sam Kerr (Australian Footballer)',
    ]

fig = LIB.visualize_barchart_titles(
    topic_model=topic_model,
    subplot_titles=labelled_topics,
    n_words=5,
    top_n_topics=8,
    height=300
)
st.plotly_chart(fig, use_container_width=True)
st.write('''
    Now we can see that the topics have improved.  
    We can make use of the top words in each topic to come up with a meaningful name.  
    ''')
st.write('\n')
st.write('\n')

topics_df = topic_model.get_topic_info()

st.write(f'''
    Next, we can also review the total number of topics and how many tweets are in each topic, to give us a sense of importance or priority.  
    There are a total of **{len(topics_df)-1}** topics, and the larget topic contains **{topics_df['Count'][1]}** tweets.  
    {topics_df['Count'][0]} tweets have also been assigned as Topic -1 or outliers.  
    These tweets are more unique and there are enough of them to form a topic.   
    ''')
st.dataframe(topics_df)
st.write('\n')

st.write('''
    As there are many topics generated, we can also visualise how closely related they are to one another.  
    Depending on the business case, we may want to merge these topics together or keep them separate.  
    If there are too many or too few topics, there is also the option to tune the parameters of the model to refine the results.  
    ''')
fig = topic_model.visualize_topics()
st.plotly_chart(fig, use_container_width=True)
st.write('\n')

st.write('''
    Lastly, we can inspect the individual tweets within each topic.  
    ''')

with st.form('inspect_tweets'):
    inspect_topic = st.number_input('Enter Topic (from -1 to 63) to Inspect:', min_value=-1, max_value=63, value=8)
    submit = st.form_submit_button('Inspect Topic')

inspect_topic_words = [i[0] for i in topic_model.get_topic(inspect_topic)[:5]]

st.write(f'''
    The top five words for Topic {inspect_topic} are: {inspect_topic_words}
    ''')
st.dataframe(topic_results.loc[(topic_results['Topic'] == inspect_topic)])