Spaces:
Runtime error
Runtime error
Revert "update codes"
Browse filesThis reverts commit 52198899b03ef3c76baa12146db06d229a505b9e.
- app.py +2 -187
- data/climate_change_tweets.csv +0 -0
- data/imdb.csv +0 -0
- data/sentiment_results.csv +0 -0
- data/zero_shot_results.csv +0 -0
- survey_analytics_library.py +120 -36
app.py
CHANGED
@@ -18,8 +18,6 @@ from scipy.stats import zscore
|
|
18 |
|
19 |
# nlp
|
20 |
from bertopic import BERTopic
|
21 |
-
from transformers import pipeline
|
22 |
-
import transformers
|
23 |
|
24 |
# custom
|
25 |
import survey_analytics_library as LIB
|
@@ -63,14 +61,6 @@ def read_topic_results():
|
|
63 |
return topic_results
|
64 |
topic_results = read_topic_results()
|
65 |
|
66 |
-
@st.cache
|
67 |
-
def read_climate_change_results():
|
68 |
-
sentiment_results = pd.read_csv(data_path+'sentiment_results.csv')
|
69 |
-
zero_shot_results = pd.read_csv(data_path+'zero_shot_results.csv')
|
70 |
-
return sentiment_results, zero_shot_results
|
71 |
-
sentiment_results, zero_shot_results = read_climate_change_results()
|
72 |
-
|
73 |
-
|
74 |
# write title of app
|
75 |
st.title('DACoP - Survey Analytics')
|
76 |
st.markdown('''---''')
|
@@ -376,184 +366,9 @@ st.markdown('''---''')
|
|
376 |
|
377 |
|
378 |
st.header('Classifiying Text Responses and Sentiment Analysis')
|
379 |
-
st.write(
|
380 |
With survey responses, sometimes as a business user, we already have an general idea of what responders are talking about and we want to categorise or classify the responses accordingly.
|
381 |
-
|
382 |
-
Using **Zero-shot Classification**, we can classify responses into one of these four categories.
|
383 |
-
As an added bonus, we can also find out how responders feel about the categories using **Sentiment Analysis**.
|
384 |
-
We'll use a different set of 10,000 tweets related to climate change.
|
385 |
-
''')
|
386 |
-
st.write('\n')
|
387 |
-
|
388 |
-
# rename column
|
389 |
-
sentiment_results = sentiment_results.rename(columns={'sequence':'Tweet'})
|
390 |
-
st.dataframe(sentiment_results[['Tweet']])
|
391 |
-
|
392 |
-
@st.cache(allow_output_mutation=True)
|
393 |
-
def load_transfomer_pipelines():
|
394 |
-
classifier_zero_shot = pipeline(
|
395 |
-
task='zero-shot-classification',
|
396 |
-
model=model_path+'distilbart-mnli-12-1',
|
397 |
-
return_all_scores=True
|
398 |
-
)
|
399 |
-
classifier_sentiment = pipeline(
|
400 |
-
task='sentiment-analysis',
|
401 |
-
model=model_path+'distilbert-base-uncased-finetuned-sst-2-english',
|
402 |
-
return_all_scores=True
|
403 |
-
)
|
404 |
-
return classifier_zero_shot, classifier_sentiment
|
405 |
-
classifier_zero_shot, classifier_sentiment = load_transfomer_pipelines()
|
406 |
-
|
407 |
-
# define candidate labels
|
408 |
-
candidate_labels = [
|
409 |
-
'finance',
|
410 |
-
'politics',
|
411 |
-
'technology',
|
412 |
-
'wildlife',
|
413 |
-
]
|
414 |
-
|
415 |
-
# define sample tweet
|
416 |
-
sample_tweet_index = 5000
|
417 |
-
|
418 |
-
# define the first and last topic number
|
419 |
-
# create range of index
|
420 |
-
tweet_index = sentiment_results.index
|
421 |
-
first_tweet = tweet_index[0]
|
422 |
-
last_tweet = tweet_index[-1]
|
423 |
|
424 |
-
st.write(f'''
|
425 |
-
As a demonstration, we'll define some categories and pick a tweet to classify and determine its sentiment.
|
426 |
-
Feel free to add your own categories or even input your own text!
|
427 |
''')
|
428 |
-
|
429 |
-
# interactive input for user to define candidate labels and tweet index for analysis
|
430 |
-
with st.form('classify_tweets'):
|
431 |
-
# input for labels
|
432 |
-
user_defined_labels = st.text_input('Enter categories (separate categories by comma):', ', '.join(candidate_labels))
|
433 |
-
candidate_labels = user_defined_labels
|
434 |
-
# input for tweet index
|
435 |
-
user_define_tweet = st.number_input(f'Enter tweet index (from {first_tweet} to {last_tweet}) to classify:', min_value=first_tweet, max_value=last_tweet, value=sample_tweet_index)
|
436 |
-
sample_tweet_index = user_define_tweet
|
437 |
-
sample_tweet = sentiment_results['Tweet'].iloc[sample_tweet_index]
|
438 |
-
# input for user defined text
|
439 |
-
user_defined_input = st.text_input('Enter custom text (optional, leave blank to use Tweets):', '')
|
440 |
-
# check if user has entered any custom text
|
441 |
-
# if user_define_input is not blank, then override sample_tweet
|
442 |
-
if user_defined_input:
|
443 |
-
sample_tweet = user_defined_input
|
444 |
-
|
445 |
-
# submit form
|
446 |
-
submit = st.form_submit_button('Classify Tweet')
|
447 |
-
|
448 |
st.write('\n')
|
449 |
-
st.write(f'''
|
450 |
-
Here are the results:
|
451 |
-
''')
|
452 |
-
st.write(f'Input Text: *\'{sample_tweet}\'*')
|
453 |
-
|
454 |
-
# get predictions from models
|
455 |
-
zero_shot_sample = classifier_zero_shot(sample_tweet, candidate_labels)
|
456 |
-
sentiment_sample = classifier_sentiment(sample_tweet)
|
457 |
-
|
458 |
-
# get sentiment
|
459 |
-
sentiment_sample = sentiment_sample[1].get('score')
|
460 |
-
sentiment_label = 'positive'
|
461 |
-
if sentiment_sample < 0.5:
|
462 |
-
sentiment_label = 'negative'
|
463 |
-
|
464 |
-
st.write(f'''
|
465 |
-
The main category is: **{zero_shot_sample['labels'][0]}** with a score of {round(zero_shot_sample['scores'][0], 2)}
|
466 |
-
Main category score ranges from 0 to 1, with 1 being very likely.
|
467 |
-
|
468 |
-
The full set of scores are: {dict(zip(zero_shot_sample['labels'], [round(score, 2) for score in zero_shot_sample['scores']]))}
|
469 |
-
Full set of scores cores add up to 1.
|
470 |
-
|
471 |
-
The sentiment is: **{sentiment_label}** with a score of {round(sentiment_sample, 2)}
|
472 |
-
Sentiment score ranges from 0 to 1, with 1 being very positive.
|
473 |
-
''')
|
474 |
-
st.write('\n')
|
475 |
-
st.write('\n')
|
476 |
-
|
477 |
-
# drop unused columns and rename columns
|
478 |
-
zero_shot_results = zero_shot_results.drop('labels_scores', axis=1)
|
479 |
-
zero_shot_results = zero_shot_results.rename(columns={'sequence':'tweet', 'label':'category'})
|
480 |
-
st.write(f'''
|
481 |
-
Lets review all the tweets and how they fall into the categories of finance, politics, technology, and wildlife.
|
482 |
-
''')
|
483 |
-
|
484 |
-
st.dataframe(zero_shot_results)
|
485 |
-
|
486 |
-
st.write(f'''
|
487 |
-
We can observe that the model does not have strong confidence in predicting the categories for some of the tweets.
|
488 |
-
It is likely that the tweet does not natually fall into one of the defined categories.
|
489 |
-
Before performing further analysis on our results, we can set a score threshold to only keep predictions that we're confident in.
|
490 |
-
''')
|
491 |
-
st.write('\n')
|
492 |
-
|
493 |
-
# interactive input for user to define candidate labels and tweet index for analysis
|
494 |
-
with st.form('classification_score_threshold'):
|
495 |
-
user_defined_threshold = st.number_input('Enter score threshold (between 0.01 and 0.99):', min_value=0.01, max_value=0.99, value=0.7, step=0.05)
|
496 |
-
# submit form
|
497 |
-
submit = st.form_submit_button('Set Threshold')
|
498 |
-
st.write('\n')
|
499 |
-
|
500 |
-
# filter and keep results with score above defined threshold
|
501 |
-
zero_shot_results_clean = zero_shot_results.loc[(zero_shot_results['score'] >= user_defined_threshold)].copy()
|
502 |
-
|
503 |
-
# rename columns
|
504 |
-
sentiment_results.columns = ['tweet', 'sentiment']
|
505 |
-
|
506 |
-
st.write(f'''
|
507 |
-
The predictions get better with a higher threshold, but reduces the final number of tweets available for further analysis.
|
508 |
-
Out of the 10,000 tweets, we are now left with {len(zero_shot_results_clean)}.
|
509 |
-
We also add on the sentiment score for the tweets, the score here ranges from 0 (most negative) to 1 (most positive).
|
510 |
-
''')
|
511 |
-
|
512 |
-
# merge in sentiment score on index
|
513 |
-
# drop unused columns
|
514 |
-
classification_sentiment_df = pd.merge(zero_shot_results_clean, sentiment_results[['sentiment']], how='left', left_index=True, right_index=True)
|
515 |
-
classification_sentiment_df = classification_sentiment_df[['tweet', 'category', 'score', 'sentiment']]
|
516 |
-
st.dataframe(classification_sentiment_df)
|
517 |
-
|
518 |
-
st.write(f'''
|
519 |
-
The difficult part for zero-shot classification is defining the right set of categories for each business case.
|
520 |
-
Some trial and error is required to find the appropriate words that can return the optimal results.
|
521 |
-
''')
|
522 |
-
st.write('\n')
|
523 |
-
|
524 |
-
# group by category, count tweets and get mean of sentiment
|
525 |
-
classification_sentiment_agg = classification_sentiment_df.groupby(['category']).agg({'tweet':'count', 'sentiment':'mean'}).reset_index()
|
526 |
-
classification_sentiment_agg = classification_sentiment_agg.rename(columns={'tweet':'count'})
|
527 |
-
|
528 |
-
st.write(f'''
|
529 |
-
Finally, we can visualise the percentage of tweets in each category and the respective average sentiment scores.
|
530 |
-
''')
|
531 |
-
|
532 |
-
fig = px.pie(
|
533 |
-
classification_sentiment_agg,
|
534 |
-
values='count',
|
535 |
-
names='category',
|
536 |
-
hole=0.35,
|
537 |
-
title='Percentage of Tweets in Each Category',
|
538 |
-
template='simple_white',
|
539 |
-
width=1000,
|
540 |
-
height=600
|
541 |
-
)
|
542 |
-
fig.update_traces(textposition='inside', textinfo='percent+label')
|
543 |
-
st.plotly_chart(fig)
|
544 |
-
|
545 |
-
fig = px.bar(
|
546 |
-
classification_sentiment_agg,
|
547 |
-
x='category',
|
548 |
-
y='sentiment',
|
549 |
-
title='Average Sentiment of Tweets in Each Category <br><sup>Overall, the sentiment of the tweets are on the negative side.</sup>',
|
550 |
-
template='simple_white',
|
551 |
-
width=1000,
|
552 |
-
height=600
|
553 |
-
)
|
554 |
-
fig.update_yaxes(range=[0, 1])
|
555 |
-
fig.add_hline(y=0.5, line_width=3, line_color='darkgreen')
|
556 |
-
st.plotly_chart(fig)
|
557 |
-
|
558 |
-
st.write('\n')
|
559 |
-
st.markdown('''---''')
|
|
|
18 |
|
19 |
# nlp
|
20 |
from bertopic import BERTopic
|
|
|
|
|
21 |
|
22 |
# custom
|
23 |
import survey_analytics_library as LIB
|
|
|
61 |
return topic_results
|
62 |
topic_results = read_topic_results()
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# write title of app
|
65 |
st.title('DACoP - Survey Analytics')
|
66 |
st.markdown('''---''')
|
|
|
366 |
|
367 |
|
368 |
st.header('Classifiying Text Responses and Sentiment Analysis')
|
369 |
+
st.write('''
|
370 |
With survey responses, sometimes as a business user, we already have an general idea of what responders are talking about and we want to categorise or classify the responses accordingly.
|
371 |
+
E.g.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
|
|
|
|
|
|
373 |
''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
st.write('\n')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/climate_change_tweets.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
data/imdb.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/sentiment_results.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
data/zero_shot_results.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
survey_analytics_library.py
CHANGED
@@ -18,6 +18,126 @@ from nltk.corpus import stopwords
|
|
18 |
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# replace text with multiple replacements
|
22 |
def replace_text(string, dict_of_replacements):
|
23 |
'''
|
@@ -259,41 +379,5 @@ def convert_zero_shot_classification_output_to_dataframe(model_output):
|
|
259 |
# drop unused columns
|
260 |
results = results.drop(['labels', 'scores'], axis=1)
|
261 |
|
262 |
-
# return
|
263 |
-
return results
|
264 |
-
|
265 |
-
|
266 |
-
# convert transformer model sentiment classification prediction into dataframe
|
267 |
-
def convert_sentiment_classification_output_to_dataframe(text_input, model_output):
|
268 |
-
'''
|
269 |
-
convert sentiment classification output into a dataframe
|
270 |
-
|
271 |
-
the model used distilbert-base-uncased-finetuned-sst-2-english outputs a list of lists with two dictionaries,
|
272 |
-
within each dictionary is a label negative or postive and the respective score
|
273 |
-
[
|
274 |
-
[
|
275 |
-
{'label': 'NEGATIVE', 'score': 0.18449656665325165},
|
276 |
-
{'label': 'POSITIVE', 'score': 0.8155034780502319}
|
277 |
-
],
|
278 |
-
...
|
279 |
-
]
|
280 |
-
the scores sum up to 1, and we extract only the positive score in this function,
|
281 |
-
append the scores to the model's input and return a dataframe
|
282 |
-
|
283 |
-
arguments:
|
284 |
-
text_input (list): a list of sequences that is input for the model
|
285 |
-
model_output (list): a list of labels and scores
|
286 |
-
|
287 |
-
return:
|
288 |
-
a dataframe of sequences and sentiment score
|
289 |
-
|
290 |
-
'''
|
291 |
-
# store model positive scores as dataframe
|
292 |
-
results = pd.DataFrame(model_output)[[1]]
|
293 |
-
# get score from column
|
294 |
-
results = results[1].apply(lambda x: x.get('score'))
|
295 |
-
# store input sequences and scores as dataframe
|
296 |
-
results = pd.DataFrame({'sequence':text_input, 'score':results})
|
297 |
-
|
298 |
# return
|
299 |
return results
|
|
|
18 |
|
19 |
|
20 |
|
21 |
+
# # create elbow plot with kmeans to find optimal number of clusters
|
22 |
+
# def create_elbow_plot_kmeans(df, num_clusters, init_method='k-means++', n_init=10, random_state=42, plot=True, template='simple_white', save=False):
|
23 |
+
# '''
|
24 |
+
# create elbow plot with kmeans to find optimal number of clusters based on inertia
|
25 |
+
# where the clusters strikes a balance between being not segmented enough and being too fragmented
|
26 |
+
|
27 |
+
# we look for the point of diminishing returns (also known as the 'elbow') in terms of the inertia,
|
28 |
+
# where inertia is how close the data points are to their respective centers or centroids
|
29 |
+
|
30 |
+
# arguments:
|
31 |
+
# df (df): a dataframe of data to cluster
|
32 |
+
# num_clusters (int): number of clusters to plot
|
33 |
+
# init_method (str): default to 'k-means++', other option is 'random'
|
34 |
+
# n_init (int): default to 10, number of times to run model, cost from the best run will be used
|
35 |
+
# random_state (int): default to 42, random seed used to initialise the model
|
36 |
+
# plot (bool): default to True, option to turn off plots
|
37 |
+
# template (str): default to 'simple_white', change as desired
|
38 |
+
# save (bool): default to False, if True save plot as .html file
|
39 |
+
|
40 |
+
# returns:
|
41 |
+
# a list of inertia for each run
|
42 |
+
# '''
|
43 |
+
|
44 |
+
# # create empty list to store inertia for each run
|
45 |
+
# inertia = []
|
46 |
+
# # define range of clusters to try
|
47 |
+
# k = range(2, num_clusters+1)
|
48 |
+
|
49 |
+
# # loop through number of clusters
|
50 |
+
# for num_clusters in tqdm(k):
|
51 |
+
# # define model
|
52 |
+
# kmeans = KMeans(n_clusters=num_clusters, init=init_method, n_init=n_init, random_state=random_state)
|
53 |
+
# # fit and predict data
|
54 |
+
# kmeans.fit_predict(df)
|
55 |
+
# # get predicted labels
|
56 |
+
# predicted_labels = kmeans.labels_
|
57 |
+
# # append score to list of scores
|
58 |
+
# inertia.append(kmeans.inertia_)
|
59 |
+
|
60 |
+
# # plot elbow plot
|
61 |
+
# if plot:
|
62 |
+
# fig = px.line(
|
63 |
+
# pd.DataFrame({'num_clusters':list(k), 'inertia':inertia}),
|
64 |
+
# x='num_clusters',
|
65 |
+
# y='inertia',
|
66 |
+
# title='Elbow Plot for Optimal Number of Clusters with '+init_method,
|
67 |
+
# markers=True,
|
68 |
+
# template=template,
|
69 |
+
# width=800,
|
70 |
+
# height=500,
|
71 |
+
# )
|
72 |
+
# st.plotly_chart(fig, use_container_width=True)
|
73 |
+
# if save:
|
74 |
+
# fig.write_html('Elbow Plot for Optimal Number of Clusters with '+init_method+'.html')
|
75 |
+
|
76 |
+
# # return
|
77 |
+
# return inertia
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
# # create plot of silhouette scores with sklearn model to find optimal number of clusters
|
82 |
+
# def silhouette_score_plot_kmeans(df, num_clusters, init_method='k-means++', n_init=10, random_state=42, plot=True, template='simple_white', save=False):
|
83 |
+
# '''
|
84 |
+
# create plot of silhouette score with kmeans to find optimal number of clusters
|
85 |
+
# where the clusters strikes a balance between being not segmented enough and being too fragmented
|
86 |
+
# the closer the score is to 1, the more easily distinguishable are the clusters from each other
|
87 |
+
|
88 |
+
# arguments:
|
89 |
+
# df (df): a dataframe of data to cluster
|
90 |
+
# num_clusters (int): number of clusters to plot
|
91 |
+
# init_method (str): default to 'k-means++', other option is 'random'
|
92 |
+
# n_init (int): default to 10, number of times to run model, cost from the best run will be used
|
93 |
+
# random_state (int): default to 42, random seed used to initialise the model
|
94 |
+
# plot (bool): default to True, option to turn off plots
|
95 |
+
# template (str): default to 'simple_white', change as desired
|
96 |
+
# save (bool): default to False, if True save plot as .html file
|
97 |
+
|
98 |
+
# returns:
|
99 |
+
# a list of silhouette scores for each run
|
100 |
+
# '''
|
101 |
+
|
102 |
+
# # create empty list to store silhoutte scores for each run
|
103 |
+
# silhouette_scores = []
|
104 |
+
# # define range of clusters to try
|
105 |
+
# k = range(2, num_clusters+1)
|
106 |
+
|
107 |
+
# # loop through number of clusters
|
108 |
+
# for num_clusters in tqdm(k):
|
109 |
+
# # define model
|
110 |
+
# kmeans = KMeans(n_clusters=num_clusters, init=init_method, n_init=n_init, random_state=random_state)
|
111 |
+
# # fit and predict data
|
112 |
+
# kmeans.fit_predict(df)
|
113 |
+
# # get predicted labels
|
114 |
+
# predicted_labels = kmeans.labels_
|
115 |
+
# # get silhoutte score
|
116 |
+
# score = silhouette_score(df, predicted_labels)
|
117 |
+
# # append score to list of scores
|
118 |
+
# silhouette_scores.append(score)
|
119 |
+
|
120 |
+
# # plot silhouette scores
|
121 |
+
# if plot:
|
122 |
+
# fig = px.line(
|
123 |
+
# pd.DataFrame({'num_clusters':list(k), 'silhouette_scores':silhouette_scores}),
|
124 |
+
# x='num_clusters',
|
125 |
+
# y='silhouette_scores',
|
126 |
+
# title='Silhouette Scores for Optimal Number of Clusters with '+init_method,
|
127 |
+
# markers=True,
|
128 |
+
# template=template,
|
129 |
+
# width=800,
|
130 |
+
# height=500,
|
131 |
+
# )
|
132 |
+
# st.plotly_chart(fig, use_container_width=True)
|
133 |
+
# if save:
|
134 |
+
# fig.write_html('Silhouette Scores for Optimal Number of Clusters with '+init_method+'.html')
|
135 |
+
|
136 |
+
# # return
|
137 |
+
# return silhouette_scores
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
# replace text with multiple replacements
|
142 |
def replace_text(string, dict_of_replacements):
|
143 |
'''
|
|
|
379 |
# drop unused columns
|
380 |
results = results.drop(['labels', 'scores'], axis=1)
|
381 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
# return
|
383 |
return results
|