Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -493,7 +493,7 @@ st.write(f'''
|
|
493 |
Lets review all the tweets and how they fall into the categories of finance, politics, technology, and wildlife.
|
494 |
''')
|
495 |
|
496 |
-
st.dataframe(zero_shot_results.style.
|
497 |
|
498 |
st.write(f'''
|
499 |
We can observe that the model does not have strong confidence in predicting the categories for some of the tweets.
|
@@ -526,10 +526,7 @@ st.write(f'''
|
|
526 |
classification_sentiment_df = pd.merge(zero_shot_results_clean, sentiment_results[['sentiment']], how='left', left_index=True, right_index=True)
|
527 |
classification_sentiment_df = classification_sentiment_df[['tweet', 'category', 'score', 'sentiment']]
|
528 |
|
529 |
-
|
530 |
-
color = 'green' if value >= 0.5 else 'red'
|
531 |
-
return 'color:{}'.format(color)
|
532 |
-
st.dataframe(classification_sentiment_df.style.applymap(highlight_sentiment, subset=['sentiment']).format(precision=2))
|
533 |
|
534 |
st.write(f'''
|
535 |
The difficult part for zero-shot classification is defining the right set of categories for each business case.
|
@@ -571,5 +568,13 @@ fig.update_yaxes(range=[0, 1])
|
|
571 |
fig.add_hline(y=0.5, line_width=3, line_color='darkgreen')
|
572 |
st.plotly_chart(fig, use_container_width=True)
|
573 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
st.write('\n')
|
575 |
-
st.
|
|
|
|
493 |
Lets review all the tweets and how they fall into the categories of finance, politics, technology, and wildlife.
|
494 |
''')
|
495 |
|
496 |
+
st.dataframe(zero_shot_results.style.format(precision=2))
|
497 |
|
498 |
st.write(f'''
|
499 |
We can observe that the model does not have strong confidence in predicting the categories for some of the tweets.
|
|
|
526 |
classification_sentiment_df = pd.merge(zero_shot_results_clean, sentiment_results[['sentiment']], how='left', left_index=True, right_index=True)
|
527 |
classification_sentiment_df = classification_sentiment_df[['tweet', 'category', 'score', 'sentiment']]
|
528 |
|
529 |
+
st.dataframe(classification_sentiment_df.style.format(precision=2))
|
|
|
|
|
|
|
530 |
|
531 |
st.write(f'''
|
532 |
The difficult part for zero-shot classification is defining the right set of categories for each business case.
|
|
|
568 |
fig.add_hline(y=0.5, line_width=3, line_color='darkgreen')
|
569 |
st.plotly_chart(fig, use_container_width=True)
|
570 |
|
571 |
+
st.markdown('''---''')
|
572 |
+
st.write('\n')
|
573 |
+
st.write('\n')
|
574 |
+
|
575 |
+
st.write('''
|
576 |
+
That's the end of the this demo 😎, the source code can be found on [Github](https://github.com/Greco1899/survey_analytics).
|
577 |
+
''')
|
578 |
st.write('\n')
|
579 |
+
st.image('https://images.unsplash.com/photo-1620712943543-bcc4688e7485?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=2565&q=80')
|
580 |
+
st.caption('Photo by [Andrea De Santis](https://unsplash.com/@santesson89) on [Unsplash](https://unsplash.com).')
|