greco commited on
Commit
c6af1a7
·
1 Parent(s): 0c0c0b8

add subheaders to improve formatting

Browse files
Files changed (1) hide show
  1. app.py +17 -6
app.py CHANGED
@@ -4,9 +4,7 @@
4
  # imports
5
  import streamlit as st
6
  import pandas as pd
7
- import numpy as np
8
  import os
9
- import matplotlib.pyplot as plt
10
  import seaborn as sns
11
  import plotly.express as px
12
  import pickle
@@ -66,7 +64,7 @@ sentiment_results, zero_shot_results = read_climate_change_results()
66
 
67
 
68
  # write title of app
69
- st.title('DACoP - Survey Analytics')
70
  st.markdown('''---''')
71
 
72
 
@@ -247,6 +245,8 @@ fig = px.pie(
247
  )
248
  st.plotly_chart(fig, use_container_width=True)
249
  st.markdown('''---''')
 
 
250
 
251
 
252
 
@@ -261,6 +261,7 @@ st.write('''
261
  ''')
262
  st.write('\n')
263
 
 
264
  st.write(f'''
265
  Here we have {len(tokyo):,} tweets from the Tokyo Olympics, going through them manually and coming up with topics would not be practical.
266
  ''')
@@ -271,10 +272,10 @@ st.dataframe(tokyo)
271
  st.write('\n')
272
  st.write('\n')
273
 
 
274
  st.write('''
275
  Lets generate some topics without performing any cleaning to the data.
276
  ''')
277
- st.write('\n')
278
 
279
  # load and plot topics using unclean data
280
  with open('data/topics_tokyo_unclean.pickle', 'rb') as pkl:
@@ -325,6 +326,7 @@ st.write(f'''
325
  st.dataframe(topics_df)
326
  st.write('\n')
327
 
 
328
  st.write('''
329
  One point to also note is that the machine is not only picking out keywords in a tweet to determine its topic.
330
  The model has an understanding of the relationship between words, e.g. 'Andy Murray' is related to 'tennis'.
@@ -353,7 +355,8 @@ st.write(f'''
353
  # display tweets from selected topic
354
  st.dataframe(topic_results.loc[(topic_results['Topic'] == inspect_topic)])
355
  st.markdown('''---''')
356
-
 
357
 
358
 
359
 
@@ -369,9 +372,14 @@ st.write(f'''
369
  ''')
370
  st.write('\n')
371
 
 
 
 
 
372
  # rename column
373
  sentiment_results = sentiment_results.rename(columns={'sequence':'Tweet'})
374
  st.dataframe(sentiment_results[['Tweet']])
 
375
 
376
  @st.cache(allow_output_mutation=True)
377
  def load_transfomer_pipelines():
@@ -405,6 +413,7 @@ tweet_index = sentiment_results.index
405
  first_tweet = tweet_index[0]
406
  last_tweet = tweet_index[-1]
407
 
 
408
  st.write(f'''
409
  As a demonstration, we'll define some categories and pick a tweet to classify and determine its sentiment.
410
  Feel free to add your own categories or even input your own text!
@@ -428,8 +437,8 @@ with st.form('classify_tweets'):
428
 
429
  # submit form
430
  submit = st.form_submit_button('Classify Tweet')
431
-
432
  st.write('\n')
 
433
  st.write(f'''
434
  Here are the results:
435
  ''')
@@ -461,6 +470,8 @@ st.write('\n')
461
  # drop unused columns and rename columns
462
  zero_shot_results = zero_shot_results.drop('labels_scores', axis=1)
463
  zero_shot_results = zero_shot_results.rename(columns={'sequence':'tweet', 'label':'category'})
 
 
464
  st.write(f'''
465
  Lets review all the tweets and how they fall into the categories of finance, politics, technology, and wildlife.
466
  ''')
 
4
  # imports
5
  import streamlit as st
6
  import pandas as pd
 
7
  import os
 
8
  import seaborn as sns
9
  import plotly.express as px
10
  import pickle
 
64
 
65
 
66
  # write title of app
67
+ st.title('Survey Analytic Techniques')
68
  st.markdown('''---''')
69
 
70
 
 
245
  )
246
  st.plotly_chart(fig, use_container_width=True)
247
  st.markdown('''---''')
248
+ st.write('\n')
249
+ st.write('\n')
250
 
251
 
252
 
 
261
  ''')
262
  st.write('\n')
263
 
264
+ st.subheader('Sample Tweets - Tokyo Olympics')
265
  st.write(f'''
266
  Here we have {len(tokyo):,} tweets from the Tokyo Olympics, going through them manually and coming up with topics would not be practical.
267
  ''')
 
272
  st.write('\n')
273
  st.write('\n')
274
 
275
+ st.subheader('Visualising Topics')
276
  st.write('''
277
  Lets generate some topics without performing any cleaning to the data.
278
  ''')
 
279
 
280
  # load and plot topics using unclean data
281
  with open('data/topics_tokyo_unclean.pickle', 'rb') as pkl:
 
326
  st.dataframe(topics_df)
327
  st.write('\n')
328
 
329
+ st.subheader('Inspecting Individual Topics')
330
  st.write('''
331
  One point to also note is that the machine is not only picking out keywords in a tweet to determine its topic.
332
  The model has an understanding of the relationship between words, e.g. 'Andy Murray' is related to 'tennis'.
 
355
  # display tweets from selected topic
356
  st.dataframe(topic_results.loc[(topic_results['Topic'] == inspect_topic)])
357
  st.markdown('''---''')
358
+ st.write('\n')
359
+ st.write('\n')
360
 
361
 
362
 
 
372
  ''')
373
  st.write('\n')
374
 
375
+ st.subheader('Sample Tweets - Climate Change')
376
+ st.write(f'''
377
+ We'll use a different set of {len(sentiment_results):,} tweets related to climate change.
378
+ ''')
379
  # rename column
380
  sentiment_results = sentiment_results.rename(columns={'sequence':'Tweet'})
381
  st.dataframe(sentiment_results[['Tweet']])
382
+ st.write('\n')
383
 
384
  @st.cache(allow_output_mutation=True)
385
  def load_transfomer_pipelines():
 
413
  first_tweet = tweet_index[0]
414
  last_tweet = tweet_index[-1]
415
 
416
+ st.subheader('Classifying Text')
417
  st.write(f'''
418
  As a demonstration, we'll define some categories and pick a tweet to classify and determine its sentiment.
419
  Feel free to add your own categories or even input your own text!
 
437
 
438
  # submit form
439
  submit = st.form_submit_button('Classify Tweet')
 
440
  st.write('\n')
441
+
442
  st.write(f'''
443
  Here are the results:
444
  ''')
 
470
  # drop unused columns and rename columns
471
  zero_shot_results = zero_shot_results.drop('labels_scores', axis=1)
472
  zero_shot_results = zero_shot_results.rename(columns={'sequence':'tweet', 'label':'category'})
473
+
474
+ st.subheader('Zero-Shot Classification and Sentiment Analysis Results')
475
  st.write(f'''
476
  Lets review all the tweets and how they fall into the categories of finance, politics, technology, and wildlife.
477
  ''')