greendra's picture
remove excess logging
d41fb0c verified
raw
history blame
12.1 kB
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image, UnidentifiedImageError
from deep_translator import GoogleTranslator
import json
import uuid
from urllib.parse import quote
import traceback
# Project by Nymbo
# --- Constants ---
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
API_TOKEN = os.getenv("HF_READ_TOKEN")
if not API_TOKEN:
print("WARNING: HF_READ_TOKEN environment variable not set. API calls may fail.")
headers = {"Authorization": f"Bearer {API_TOKEN}"} if API_TOKEN else {}
timeout = 100 # seconds for API call timeout
IMAGE_DIR = "temp_generated_images" # Directory to store temporary images
ARINTELLI_REDIRECT_BASE = "https://arintelli.com/app/" # Your redirector URL
# --- Ensure temporary directory exists ---
try:
os.makedirs(IMAGE_DIR, exist_ok=True)
print(f"Confirmed temporary image directory exists: {IMAGE_DIR}")
except OSError as e:
print(f"ERROR: Could not create directory {IMAGE_DIR}: {e}")
# This is critical, so raise an error to prevent app start if dir fails
raise gr.Error(f"Fatal Error: Cannot create temporary image directory: {e}")
# --- Get Absolute Path for allowed_paths ---
# This needs to be done *before* calling launch()
absolute_image_dir = os.path.abspath(IMAGE_DIR)
print(f"Absolute path for allowed_paths: {absolute_image_dir}")
# Function to query the API and return the generated image and download link
def query(prompt, negative_prompt="", steps=30, cfg_scale=7, seed=-1, width=1024, height=1024):
# Removed sampler and strength as they are not explicitly used in the payload below
# Note: If the API endpoint *does* support sampler/strength, add them back to the payload
if not prompt or not prompt.strip():
print("Empty prompt received.")
# Return None for image and an informative message for the HTML component
return None, "<p style='color: orange; text-align: center;'>Please enter a prompt.</p>"
key = random.randint(0, 999)
print(f"\n--- Generation {key} Started ---")
# Translation
try:
translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
except Exception as e:
translated_prompt = prompt # Fallback to original if translation fails
# Add suffix to prompt
final_prompt = f"{translated_prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'Generation {key} prompt: {final_prompt}')
# Prepare the payload for the API call
payload = {
"inputs": final_prompt,
"negative_prompt": negative_prompt, # Assuming API accepts negative_prompt
"steps": steps,
"guidance_scale": cfg_scale, # API often uses guidance_scale
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"parameters": {
"width": width,
"height": height,
# If the API supports other params like 'steps', 'guidance_scale', they might belong here or top-level
}
# Removed 'is_negative' as negative_prompt is usually passed directly
# Removed 'strength' and 'sampler' as they weren't in the target API structure
}
# API Call Section
try:
print(f"Sending request to API: {API_URL}")
if not headers:
print("WARNING: Authorization header is missing (HF_READ_TOKEN not set?)")
return None, "<p style='color: red; text-align: center;'>Configuration Error: API Token missing.</p>"
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
response.raise_for_status()
image_bytes = response.content
if not image_bytes or len(image_bytes) < 100:
print(f"Error: Received empty or very small response content (length: {len(image_bytes)}). Potential API issue.")
return None, "<p style='color: red; text-align: center;'>API returned invalid image data.</p>"
try:
image = Image.open(io.BytesIO(image_bytes))
except UnidentifiedImageError as img_err:
print(f"Error: Could not identify or open image from API response bytes: {img_err}")
return None, "<p style='color: red; text-align: center;'>Failed to process image data from API.</p>"
# --- Save image and create download link ---
filename = f"{int(time.time())}_{uuid.uuid4().hex[:8]}.png"
save_path = os.path.join(IMAGE_DIR, filename)
absolute_save_path = os.path.abspath(save_path)
try:
print(f"Attempting to save image to: {absolute_save_path}")
image.save(save_path, "PNG")
if os.path.exists(save_path):
file_size = os.path.getsize(save_path)
if file_size < 100:
print(f"WARNING: Saved file {save_path} is very small ({file_size} bytes). May indicate an issue.")
else:
print(f"CRITICAL ERROR: File NOT found at {save_path} (Absolute: {absolute_save_path}) immediately after saving!")
return image, "<p style='color: red; text-align: center;'>Internal Error: Failed to confirm image file save.</p>"
# Determine space name (adjust logic if API_URL format differs)
try:
space_name = "greendra-flux-1-schnell-serverless"
# A more robust way might involve getting the space ID from env vars if available
except IndexError:
print("WARNING: Could not reliably determine space name from API_URL. Using a default.")
space_name = "unknown-flux-space" # Provide a fallback
relative_file_url = f"/gradio_api/file={save_path}"
encoded_file_url = quote(relative_file_url)
arintelli_url = f"{ARINTELLI_REDIRECT_BASE}?download_url={encoded_file_url}&space_name={space_name}"
print(f"Generation link: {arintelli_url}")
# Use Gradio's primary button style for the link
download_html = (
f'<div style="text-align: center; margin-top: 15px;">' # Added margin-top
f'<a href="{arintelli_url}" target="_blank" class="gr-button gr-button-lg gr-button-primary">'
f'Download Image'
f'</a>'
f'</div>'
)
print(f"--- Generation {key} Completed Successfully ---")
return image, download_html
except (OSError, IOError) as save_err:
print(f"CRITICAL ERROR: Failed to save image to {save_path} (Absolute: {absolute_save_path}): {save_err}")
traceback.print_exc()
return image, f"<p style='color: red; text-align: center;'>Internal Error: Failed to save image file. Details: {save_err}</p>"
except Exception as e:
print(f"Error during link creation or unexpected save issue: {e}")
traceback.print_exc()
return image, "<p style='color: red; text-align: center;'>Internal Error creating download link.</p>"
# --- Exception Handling for API Call ---
except requests.exceptions.Timeout:
print(f"Error: Request timed out after {timeout} seconds.")
return None, "<p style='color: red; text-align: center;'>Request timed out. The model is taking too long.</p>"
except requests.exceptions.HTTPError as e:
status_code = e.response.status_code
error_text = e.response.text
try:
error_data = e.response.json()
error_text = error_data.get('error', error_text)
if isinstance(error_text, dict) and 'message' in error_text:
error_text = error_text['message']
except json.JSONDecodeError:
pass
print(f"Error: Failed API call. Status: {status_code}, Response: {error_text}")
if status_code == 503:
estimated_time = error_data.get("estimated_time") if 'error_data' in locals() and isinstance(error_data, dict) else None
if estimated_time:
error_message = f"Model is loading (503), please wait. Est. time: {estimated_time:.1f}s. Try again."
else:
error_message = f"Service unavailable (503). Model might be loading or down. Try again later."
elif status_code == 400:
error_message = f"Bad Request (400): Check parameters. API Error: {error_text}"
elif status_code == 422:
error_message = f"Validation Error (422): Input invalid. API Error: {error_text}"
elif status_code == 401 or status_code == 403:
error_message = f"Authorization Error ({status_code}): Check your API Token (HF_READ_TOKEN)."
else:
error_message = f"API Error: {status_code}. Details: {error_text}"
return None, f"<p style='color: red; text-align: center;'>{error_message}</p>"
except Exception as e:
print(f"An unexpected error occurred: {e}")
traceback.print_exc()
return None, f"<p style='color: red; text-align: center;'>An unexpected error occurred: {e}</p>"
# CSS to style the app
css = """
#app-container {
max-width: 800px;
margin-left: auto;
margin-right: auto;
}
textarea:focus {
background: #0d1117 !important;
}
#download-link-container p {
margin-top: 10px;
font-size: 0.9em;
}
"""
# Build the Gradio UI with Blocks
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
gr.HTML("<center><h1>FLUX.1-Schnell</h1></center>")
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
with gr.Row():
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=30, minimum=1, maximum=100, step=1) # Default updated based on query function default
cfg = gr.Slider(label="CFG Scale (guidance_scale)", value=7, minimum=1, maximum=20, step=1) # Label updated
# Removed strength and sampler sliders as they are not passed to query
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1, info="Set to -1 for random seed")
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
# --- Output Components ---
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
with gr.Row():
# HTML component to display status messages or the download link
download_link_display = gr.HTML(elem_id="download-link-container")
# Bind the button to the query function
text_button.click(
query,
# Ensure inputs match the query function definition
inputs=[text_prompt, negative_prompt, steps, cfg, seed, width, height],
# Outputs go to the image and HTML components
outputs=[image_output, download_link_display]
)
# Launch the Gradio app with allowed_paths
print("Starting Gradio app...")
app.launch(
show_api=False,
share=False,
allowed_paths=[absolute_image_dir] # Added allowed_paths
)