greendra commited on
Commit
2f294b2
·
verified ·
1 Parent(s): c84bbeb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +203 -60
app.py CHANGED
@@ -4,67 +4,198 @@ import io
4
  import random
5
  import os
6
  import time
7
- from PIL import Image
8
  from deep_translator import GoogleTranslator
9
  import json
 
 
 
10
 
11
  # Project by Nymbo
12
 
 
13
  API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
14
  API_TOKEN = os.getenv("HF_READ_TOKEN")
15
- headers = {"Authorization": f"Bearer {API_TOKEN}"}
16
- timeout = 100
 
 
17
 
18
- # Function to query the API and return the generated image
19
- def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
20
- if prompt == "" or prompt is None:
21
- return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  key = random.randint(0, 999)
24
-
25
- API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
26
- headers = {"Authorization": f"Bearer {API_TOKEN}"}
27
-
28
- # Translate the prompt from Russian to English if necessary
29
- prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
30
- print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
31
-
32
- # Add some extra flair to the prompt
33
- prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
34
- print(f'\033[1mGeneration {key}:\033[0m {prompt}')
35
-
36
- # Prepare the payload for the API call, including width and height
 
 
37
  payload = {
38
- "inputs": prompt,
39
- "is_negative": is_negative,
40
  "steps": steps,
41
- "cfg_scale": cfg_scale,
42
  "seed": seed if seed != -1 else random.randint(1, 1000000000),
43
- "strength": strength,
44
  "parameters": {
45
- "width": width, # Pass the width to the API
46
- "height": height # Pass the height to the API
 
47
  }
 
 
48
  }
49
 
50
- # Send the request to the API and handle the response
51
- response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
52
- if response.status_code != 200:
53
- print(f"Error: Failed to get image. Response status: {response.status_code}")
54
- print(f"Response content: {response.text}")
55
- if response.status_code == 503:
56
- raise gr.Error(f"{response.status_code} : The model is being loaded")
57
- raise gr.Error(f"{response.status_code}")
58
-
59
  try:
60
- # Convert the response content into an image
 
 
 
 
 
 
 
61
  image_bytes = response.content
62
- image = Image.open(io.BytesIO(image_bytes))
63
- print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
64
- return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  except Exception as e:
66
- print(f"Error when trying to open the image: {e}")
67
- return None
 
 
68
 
69
  # CSS to style the app
70
  css = """
@@ -76,44 +207,56 @@ css = """
76
  textarea:focus {
77
  background: #0d1117 !important;
78
  }
 
 
 
 
79
  """
80
 
81
  # Build the Gradio UI with Blocks
82
  with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
83
- # Add a title to the app
84
  gr.HTML("<center><h1>FLUX.1-Schnell</h1></center>")
85
-
86
- # Container for all the UI elements
87
  with gr.Column(elem_id="app-container"):
88
- # Add a text input for the main prompt
89
  with gr.Row():
90
  with gr.Column(elem_id="prompt-container"):
91
  with gr.Row():
92
  text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
93
-
94
- # Accordion for advanced settings
95
  with gr.Row():
96
  with gr.Accordion("Advanced Settings", open=False):
97
  negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
98
  with gr.Row():
99
  width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
100
  height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
101
- steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=100, step=1)
102
- cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
103
- strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
104
- seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
105
- method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
106
 
107
- # Add a button to trigger the image generation
108
  with gr.Row():
109
  text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
110
-
111
- # Image output area to display the generated image
112
  with gr.Row():
113
  image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
114
-
115
- # Bind the button to the query function with the added width and height inputs
116
- text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
 
 
 
 
 
 
 
 
 
117
 
118
- # Launch the Gradio app
119
- app.launch(show_api=False, share=False)
 
 
 
 
 
 
4
  import random
5
  import os
6
  import time
7
+ from PIL import Image, UnidentifiedImageError
8
  from deep_translator import GoogleTranslator
9
  import json
10
+ import uuid
11
+ from urllib.parse import quote
12
+ import traceback
13
 
14
  # Project by Nymbo
15
 
16
+ # --- Constants ---
17
  API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
18
  API_TOKEN = os.getenv("HF_READ_TOKEN")
19
+ if not API_TOKEN:
20
+ print("WARNING: HF_READ_TOKEN environment variable not set. API calls may fail.")
21
+ headers = {"Authorization": f"Bearer {API_TOKEN}"} if API_TOKEN else {}
22
+ timeout = 100 # seconds for API call timeout
23
 
24
+ IMAGE_DIR = "temp_generated_images" # Directory to store temporary images
25
+ ARINTELLI_REDIRECT_BASE = "https://arintelli.com/app/" # Your redirector URL
26
+
27
+ # --- Ensure temporary directory exists ---
28
+ try:
29
+ os.makedirs(IMAGE_DIR, exist_ok=True)
30
+ print(f"Confirmed temporary image directory exists: {IMAGE_DIR}")
31
+ except OSError as e:
32
+ print(f"ERROR: Could not create directory {IMAGE_DIR}: {e}")
33
+ # This is critical, so raise an error to prevent app start if dir fails
34
+ raise gr.Error(f"Fatal Error: Cannot create temporary image directory: {e}")
35
+
36
+ # --- Get Absolute Path for allowed_paths ---
37
+ # This needs to be done *before* calling launch()
38
+ absolute_image_dir = os.path.abspath(IMAGE_DIR)
39
+ print(f"Absolute path for allowed_paths: {absolute_image_dir}")
40
+
41
+ # Function to query the API and return the generated image and download link
42
+ def query(prompt, negative_prompt="", steps=30, cfg_scale=7, seed=-1, width=1024, height=1024):
43
+ # Removed sampler and strength as they are not explicitly used in the payload below
44
+ # Note: If the API endpoint *does* support sampler/strength, add them back to the payload
45
+ if not prompt or not prompt.strip():
46
+ print("Empty prompt received.")
47
+ # Return None for image and an informative message for the HTML component
48
+ return None, "<p style='color: orange; text-align: center;'>Please enter a prompt.</p>"
49
 
50
  key = random.randint(0, 999)
51
+ print(f"\n--- Generation {key} Started ---")
52
+
53
+ # Translation
54
+ try:
55
+ translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
56
+ print(f'Generation {key} translation: {translated_prompt}')
57
+ except Exception as e:
58
+ print(f"Translation failed: {e}. Using original prompt.")
59
+ translated_prompt = prompt # Fallback to original if translation fails
60
+
61
+ # Add suffix to prompt
62
+ final_prompt = f"{translated_prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
63
+ print(f'Generation {key} final prompt: {final_prompt}')
64
+
65
+ # Prepare the payload for the API call
66
  payload = {
67
+ "inputs": final_prompt,
68
+ "negative_prompt": negative_prompt, # Assuming API accepts negative_prompt
69
  "steps": steps,
70
+ "guidance_scale": cfg_scale, # API often uses guidance_scale
71
  "seed": seed if seed != -1 else random.randint(1, 1000000000),
 
72
  "parameters": {
73
+ "width": width,
74
+ "height": height,
75
+ # If the API supports other params like 'steps', 'guidance_scale', they might belong here or top-level
76
  }
77
+ # Removed 'is_negative' as negative_prompt is usually passed directly
78
+ # Removed 'strength' and 'sampler' as they weren't in the target API structure
79
  }
80
 
81
+ # API Call Section
 
 
 
 
 
 
 
 
82
  try:
83
+ print(f"Sending request to API: {API_URL}")
84
+ if not headers:
85
+ print("WARNING: Authorization header is missing (HF_READ_TOKEN not set?)")
86
+ return None, "<p style='color: red; text-align: center;'>Configuration Error: API Token missing.</p>"
87
+
88
+ response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
89
+ response.raise_for_status()
90
+
91
  image_bytes = response.content
92
+ if not image_bytes or len(image_bytes) < 100:
93
+ print(f"Error: Received empty or very small response content (length: {len(image_bytes)}). Potential API issue.")
94
+ return None, "<p style='color: red; text-align: center;'>API returned invalid image data.</p>"
95
+
96
+ try:
97
+ image = Image.open(io.BytesIO(image_bytes))
98
+ print(f"Image received and opened successfully. Format: {image.format}, Size: {image.size}")
99
+ except UnidentifiedImageError as img_err:
100
+ print(f"Error: Could not identify or open image from API response bytes: {img_err}")
101
+ return None, "<p style='color: red; text-align: center;'>Failed to process image data from API.</p>"
102
+
103
+ print(f'Generation {key} API call successful!')
104
+
105
+ # --- Save image and create download link ---
106
+ filename = f"{int(time.time())}_{uuid.uuid4().hex[:8]}.png"
107
+ save_path = os.path.join(IMAGE_DIR, filename)
108
+ absolute_save_path = os.path.abspath(save_path)
109
+
110
+ try:
111
+ print(f"Attempting to save image to: {absolute_save_path}")
112
+ image.save(save_path, "PNG")
113
+
114
+ if os.path.exists(save_path):
115
+ file_size = os.path.getsize(save_path)
116
+ print(f"SUCCESS: Image confirmed saved to: {save_path} (Absolute: {absolute_save_path})")
117
+ print(f"Saved file size: {file_size} bytes")
118
+ if file_size < 100:
119
+ print(f"WARNING: Saved file {save_path} is very small ({file_size} bytes). May indicate an issue.")
120
+ else:
121
+ print(f"CRITICAL ERROR: File NOT found at {save_path} (Absolute: {absolute_save_path}) immediately after saving!")
122
+ return image, "<p style='color: red; text-align: center;'>Internal Error: Failed to confirm image file save.</p>"
123
+
124
+ # Determine space name (adjust logic if API_URL format differs)
125
+ try:
126
+ space_name = "greendra-flux-1-schnell-serverless"
127
+ # A more robust way might involve getting the space ID from env vars if available
128
+ except IndexError:
129
+ print("WARNING: Could not reliably determine space name from API_URL. Using a default.")
130
+ space_name = "unknown-flux-space" # Provide a fallback
131
+ print(f"Current space name: {space_name}")
132
+
133
+ relative_file_url = f"/gradio_api/file={save_path}"
134
+ print(f"Generated relative file URL for Gradio API: {relative_file_url}")
135
+
136
+ encoded_file_url = quote(relative_file_url)
137
+ arintelli_url = f"{ARINTELLI_REDIRECT_BASE}?download_url={encoded_file_url}&space_name={space_name}"
138
+ print(f"Generated redirect link: {arintelli_url}")
139
+
140
+ # Use Gradio's primary button style for the link
141
+ download_html = (
142
+ f'<div style="text-align: center; margin-top: 15px;">' # Added margin-top
143
+ f'<a href="{arintelli_url}" target="_blank" class="gr-button gr-button-lg gr-button-primary">'
144
+ f'Download Image'
145
+ f'</a>'
146
+ f'</div>'
147
+ )
148
+
149
+ print(f"--- Generation {key} Completed Successfully ---")
150
+ return image, download_html
151
+
152
+ except (OSError, IOError) as save_err:
153
+ print(f"CRITICAL ERROR: Failed to save image to {save_path} (Absolute: {absolute_save_path}): {save_err}")
154
+ traceback.print_exc()
155
+ return image, f"<p style='color: red; text-align: center;'>Internal Error: Failed to save image file. Details: {save_err}</p>"
156
+ except Exception as e:
157
+ print(f"Error during link creation or unexpected save issue: {e}")
158
+ traceback.print_exc()
159
+ return image, "<p style='color: red; text-align: center;'>Internal Error creating download link.</p>"
160
+
161
+ # --- Exception Handling for API Call ---
162
+ except requests.exceptions.Timeout:
163
+ print(f"Error: Request timed out after {timeout} seconds.")
164
+ return None, "<p style='color: red; text-align: center;'>Request timed out. The model is taking too long.</p>"
165
+ except requests.exceptions.HTTPError as e:
166
+ status_code = e.response.status_code
167
+ error_text = e.response.text
168
+ try:
169
+ error_data = e.response.json()
170
+ error_text = error_data.get('error', error_text)
171
+ if isinstance(error_text, dict) and 'message' in error_text:
172
+ error_text = error_text['message']
173
+ except json.JSONDecodeError:
174
+ pass
175
+
176
+ print(f"Error: Failed API call. Status: {status_code}, Response: {error_text}")
177
+
178
+ if status_code == 503:
179
+ estimated_time = error_data.get("estimated_time") if 'error_data' in locals() and isinstance(error_data, dict) else None
180
+ if estimated_time:
181
+ error_message = f"Model is loading (503), please wait. Est. time: {estimated_time:.1f}s. Try again."
182
+ else:
183
+ error_message = f"Service unavailable (503). Model might be loading or down. Try again later."
184
+ elif status_code == 400:
185
+ error_message = f"Bad Request (400): Check parameters. API Error: {error_text}"
186
+ elif status_code == 422:
187
+ error_message = f"Validation Error (422): Input invalid. API Error: {error_text}"
188
+ elif status_code == 401 or status_code == 403:
189
+ error_message = f"Authorization Error ({status_code}): Check your API Token (HF_READ_TOKEN)."
190
+ else:
191
+ error_message = f"API Error: {status_code}. Details: {error_text}"
192
+
193
+ return None, f"<p style='color: red; text-align: center;'>{error_message}</p>"
194
  except Exception as e:
195
+ print(f"An unexpected error occurred: {e}")
196
+ traceback.print_exc()
197
+ return None, f"<p style='color: red; text-align: center;'>An unexpected error occurred: {e}</p>"
198
+
199
 
200
  # CSS to style the app
201
  css = """
 
207
  textarea:focus {
208
  background: #0d1117 !important;
209
  }
210
+ #download-link-container p { /* Style error/status messages in the HTML component */
211
+ margin-top: 10px;
212
+ font-size: 0.9em;
213
+ }
214
  """
215
 
216
  # Build the Gradio UI with Blocks
217
  with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
 
218
  gr.HTML("<center><h1>FLUX.1-Schnell</h1></center>")
219
+
 
220
  with gr.Column(elem_id="app-container"):
 
221
  with gr.Row():
222
  with gr.Column(elem_id="prompt-container"):
223
  with gr.Row():
224
  text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
225
+
 
226
  with gr.Row():
227
  with gr.Accordion("Advanced Settings", open=False):
228
  negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
229
  with gr.Row():
230
  width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
231
  height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
232
+ steps = gr.Slider(label="Sampling steps", value=30, minimum=1, maximum=100, step=1) # Default updated based on query function default
233
+ cfg = gr.Slider(label="CFG Scale (guidance_scale)", value=7, minimum=1, maximum=20, step=1) # Label updated
234
+ # Removed strength and sampler sliders as they are not passed to query
235
+ seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1, info="Set to -1 for random seed")
 
236
 
 
237
  with gr.Row():
238
  text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
239
+
240
+ # --- Output Components ---
241
  with gr.Row():
242
  image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
243
+ with gr.Row():
244
+ # HTML component to display status messages or the download link
245
+ download_link_display = gr.HTML(elem_id="download-link-container")
246
+
247
+ # Bind the button to the query function
248
+ text_button.click(
249
+ query,
250
+ # Ensure inputs match the query function definition
251
+ inputs=[text_prompt, negative_prompt, steps, cfg, seed, width, height],
252
+ # Outputs go to the image and HTML components
253
+ outputs=[image_output, download_link_display]
254
+ )
255
 
256
+ # Launch the Gradio app with allowed_paths
257
+ print("Starting Gradio app...")
258
+ app.launch(
259
+ show_api=False,
260
+ share=False,
261
+ allowed_paths=[absolute_image_dir] # Added allowed_paths
262
+ )