greendra's picture
Update app.py
a2f84cc verified
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image, UnidentifiedImageError # Added UnidentifiedImageError
from deep_translator import GoogleTranslator
import json
import uuid
from urllib.parse import quote
import traceback # For detailed error logging
# Project by Nymbo
# --- Constants ---
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo"
API_TOKEN = os.getenv("HF_READ_TOKEN")
if not API_TOKEN:
print("WARNING: HF_READ_TOKEN environment variable not set. API calls may fail.")
# Optionally, raise an error or exit if the token is essential
# raise ValueError("Missing required environment variable: HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"} if API_TOKEN else {}
timeout = 100 # seconds for API call timeout
IMAGE_DIR = "temp_generated_images" # Directory to store temporary images
ARINTELI_REDIRECT_BASE = "https://arinteli.com/app/" # Your redirector URL
# --- Ensure temporary directory exists ---
try:
os.makedirs(IMAGE_DIR, exist_ok=True)
print(f"Confirmed temporary image directory exists: {IMAGE_DIR}")
except OSError as e:
print(f"ERROR: Could not create directory {IMAGE_DIR}: {e}")
# This is critical, so raise an error to prevent app start if dir fails
raise gr.Error(f"Fatal Error: Cannot create temporary image directory: {e}")
# --- Get Absolute Path for allowed_paths ---
# This needs to be done *before* calling launch()
absolute_image_dir = os.path.abspath(IMAGE_DIR)
print(f"Absolute path for allowed_paths: {absolute_image_dir}")
# --- Function to query the API and return the generated image and download link ---
def query(prompt, negative_prompt, steps=4, cfg_scale=0, seed=-1, width=1024, height=1024):
# Renamed `strength` input as it wasn't used in the payload for txt2img
# Removed `sampler` input as it wasn't used in payload
# Basic Input Validation
if not prompt or not prompt.strip():
print("Empty prompt received.")
# Return None for image and an informative message for the HTML component
return None, "<p style='color: orange; text-align: center;'>Please enter a prompt.</p>"
key = random.randint(0, 999)
print(f"\n--- Generation {key} Started ---")
# Translation
try:
# Using 'auto' source detection
translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
except Exception as e:
print(f"Translation failed: {e}. Using original prompt.")
translated_prompt = prompt # Fallback to original if translation fails
# Add suffix to prompt
final_prompt = f"{translated_prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'Generation {key} prompt: {final_prompt}')
# Prepare payload for API call
payload = {
"inputs": final_prompt,
"parameters": { # Nested parameters as per original structure
"width": width,
"height": height,
"num_inference_steps": steps,
"negative_prompt": negative_prompt,
"guidance_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
}
# Add other parameters here if needed (e.g., sampler if supported)
}
# API Call Section
try:
if not headers:
print("WARNING: Authorization header is missing (HF_READ_TOKEN not set?)")
# Handle error appropriately - maybe return an error message
return None, "<p style='color: red; text-align: center;'>Configuration Error: API Token missing.</p>"
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
response.raise_for_status() # Raises HTTPError for 4xx/5xx responses
image_bytes = response.content
# Check for valid image data before proceeding
if not image_bytes or len(image_bytes) < 100: # Basic check for empty/tiny response
print(f"Error: Received empty or very small response content (length: {len(image_bytes)}). Potential API issue.")
return None, "<p style='color: red; text-align: center;'>API returned invalid image data.</p>"
try:
image = Image.open(io.BytesIO(image_bytes))
except UnidentifiedImageError as img_err:
print(f"Error: Could not identify or open image from API response bytes: {img_err}")
# Optionally save the invalid bytes for debugging
# error_bytes_path = os.path.join(IMAGE_DIR, f"error_{key}_bytes.bin")
# with open(error_bytes_path, "wb") as f: f.write(image_bytes)
# print(f"Saved problematic bytes to {error_bytes_path}")
return None, "<p style='color: red; text-align: center;'>Failed to process image data from API.</p>"
# --- Save image and create download link ---
filename = f"{int(time.time())}_{uuid.uuid4().hex[:8]}.png"
# save_path is relative to the script's execution directory
save_path = os.path.join(IMAGE_DIR, filename)
absolute_save_path = os.path.abspath(save_path) # Get absolute path for logging
try:
# Save image explicitly as PNG
image.save(save_path, "PNG")
# *** Verify file exists after saving ***
if os.path.exists(save_path):
file_size = os.path.getsize(save_path)
if file_size < 100: # Warn if the saved file is suspiciously small
print(f"WARNING: Saved file {save_path} is very small ({file_size} bytes). May indicate an issue.")
# Optionally return a warning message in the UI
# return image, "<p style='color: orange; text-align: center;'>Warning: Saved image file is unexpectedly small.</p>"
else:
# This indicates a serious problem if save() didn't raise an error but the file isn't there
print(f"CRITICAL ERROR: File NOT found at {save_path} (Absolute: {absolute_save_path}) immediately after saving!")
return image, "<p style='color: red; text-align: center;'>Internal Error: Failed to confirm image file save.</p>"
# Get current space name from the API URL
space_name = "greendra-stable-diffusion-3-5-large-serverless"
relative_file_url = f"/gradio_api/file={save_path}"
encoded_file_url = quote(relative_file_url)
# Add space_name parameter to the URL
arinteli_url = f"{ARINTELI_REDIRECT_BASE}?download_url={encoded_file_url}&space_name={space_name}"
print(f"{arinteli_url}")
# Use simpler button style like the Run button
download_html = (
f'<div style="text-align: center;">'
f'<a href="{arinteli_url}" target="_blank" class="gr-button gr-button-lg gr-button-primary">'
f'Download Image'
f'</a>'
f'</div>'
)
print(f"--- Generation {key} Done ---")
return image, download_html
except (OSError, IOError) as save_err:
# Handle errors during the file save operation
print(f"CRITICAL ERROR: Failed to save image to {save_path} (Absolute: {absolute_save_path}): {save_err}")
traceback.print_exc() # Log detailed traceback
return image, f"<p style='color: red; text-align: center;'>Internal Error: Failed to save image file. Details: {save_err}</p>"
except Exception as e:
# Catch any other unexpected errors during link creation/saving
print(f"Error during link creation or unexpected save issue: {e}")
traceback.print_exc()
# Return the generated image (if available) but indicate link error
return image, "<p style='color: red; text-align: center;'>Internal Error creating download link.</p>"
# --- Exception Handling for API Call ---
except requests.exceptions.Timeout:
print(f"Error: Request timed out after {timeout} seconds.")
return None, "<p style='color: red; text-align: center;'>Request timed out. The model is taking too long.</p>"
except requests.exceptions.HTTPError as e:
# Handle HTTP errors from the API (4xx, 5xx)
status_code = e.response.status_code
error_text = e.response.text # Default error text
try:
# Try to parse more specific error message from JSON response
error_data = e.response.json()
error_text = error_data.get('error', error_text)
if isinstance(error_text, dict) and 'message' in error_text:
error_text = error_text['message'] # Handle nested messages
except json.JSONDecodeError:
pass # Keep raw text if not JSON
print(f"Error: Failed API call. Status: {status_code}, Response: {error_text}")
# Generate user-friendly messages based on status code
if status_code == 503: # Service Unavailable (often model loading)
estimated_time = error_data.get("estimated_time") if 'error_data' in locals() and isinstance(error_data, dict) else None
if estimated_time:
error_message = f"Model is loading (503), please wait. Est. time: {estimated_time:.1f}s. Try again."
else:
error_message = f"Service unavailable (503). Model might be loading or down. Try again later."
elif status_code == 400: # Bad Request (invalid parameters)
error_message = f"Bad Request (400): Check parameters. API Error: {error_text}"
elif status_code == 422: # Unprocessable Entity (validation error)
error_message = f"Validation Error (422): Input invalid. API Error: {error_text}"
elif status_code == 401 or status_code == 403: # Unauthorized / Forbidden
error_message = f"Authorization Error ({status_code}): Check your API Token (HF_READ_TOKEN)."
else: # Generic API error
error_message = f"API Error: {status_code}. Details: {error_text}"
# Return None for image, and the error message string for the HTML component
return None, f"<p style='color: red; text-align: center;'>{error_message}</p>"
except Exception as e:
# Catch any other unexpected errors during the process
print(f"An unexpected error occurred: {e}")
traceback.print_exc() # Log detailed traceback
return None, f"<p style='color: red; text-align: center;'>An unexpected error occurred: {e}</p>"
# --- CSS Styling ---
css = """
#app-container {
max-width: 800px;
margin-left: auto;
margin-right: auto;
}
textarea:focus {
background: #0d1117 !important;
}
#download-link-container p { /* Style the link container */
margin-top: 10px; /* Add some space above the link */
font-size: 0.9em; /* Slightly smaller text for the link message */
}
"""
# --- Build the Gradio UI with Blocks ---
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
gr.HTML("<center><h1>Stable Diffusion 3.5 Large Turbo</h1></center>")
with gr.Column(elem_id="app-container"):
# --- Input Components ---
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(
label="Prompt",
placeholder="Enter a prompt here",
lines=2,
elem_id="prompt-text-input"
)
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="What should not be in the image",
value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos",
lines=3,
elem_id="negative-prompt-text-input"
)
with gr.Row():
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=8, step=1)
cfg = gr.Slider(label="CFG Scale (guidance_scale)", value=0, minimum=0, maximum=10, step=1)
# Removed 'strength' slider as it wasn't used in query payload
# strength = gr.Slider(label="Strength (Primarily for Img2Img)", value=0.7, minimum=0, maximum=1, step=0.001, info="Note: Strength is mainly used in Image-to-Image generation.")
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1, info="Set to -1 for random seed")
# Removed 'method' radio as it wasn't used in query payload
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"], info="Note: Sampler choice might not be supported by this API.")
# --- Action Button ---
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
# --- Output Components ---
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
with gr.Row():
# HTML component to display status messages or the download link
download_link_display = gr.HTML(elem_id="download-link-container")
# --- Event Listener ---
# Bind the button click to the query function
text_button.click(
query,
# Ensure the inputs list matches the parameters of the `query` function definition
inputs=[text_prompt, negative_prompt, steps, cfg, seed, width, height],
# Outputs go to the image component and the HTML component
outputs=[image_output, download_link_display]
)
# --- Launch the Gradio app ---
print("Starting Gradio app...")
# Use allowed_paths with the pre-calculated absolute path to the image directory
app.launch(
show_api=False,
share=False, # Set to True only if you need a public link for direct testing
allowed_paths=[absolute_image_dir]
)