|
import gradio as gr |
|
import requests |
|
import io |
|
import random |
|
import os |
|
import time |
|
from PIL import Image, UnidentifiedImageError |
|
from deep_translator import GoogleTranslator |
|
import json |
|
import uuid |
|
from urllib.parse import quote |
|
import traceback |
|
|
|
|
|
|
|
|
|
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo" |
|
API_TOKEN = os.getenv("HF_READ_TOKEN") |
|
if not API_TOKEN: |
|
print("WARNING: HF_READ_TOKEN environment variable not set. API calls may fail.") |
|
|
|
|
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} if API_TOKEN else {} |
|
timeout = 100 |
|
|
|
IMAGE_DIR = "temp_generated_images" |
|
ARINTELI_REDIRECT_BASE = "https://arinteli.com/app/" |
|
|
|
|
|
try: |
|
os.makedirs(IMAGE_DIR, exist_ok=True) |
|
print(f"Confirmed temporary image directory exists: {IMAGE_DIR}") |
|
except OSError as e: |
|
print(f"ERROR: Could not create directory {IMAGE_DIR}: {e}") |
|
|
|
raise gr.Error(f"Fatal Error: Cannot create temporary image directory: {e}") |
|
|
|
|
|
|
|
absolute_image_dir = os.path.abspath(IMAGE_DIR) |
|
print(f"Absolute path for allowed_paths: {absolute_image_dir}") |
|
|
|
|
|
|
|
def query(prompt, negative_prompt, steps=4, cfg_scale=0, seed=-1, width=1024, height=1024): |
|
|
|
|
|
|
|
|
|
if not prompt or not prompt.strip(): |
|
print("Empty prompt received.") |
|
|
|
return None, "<p style='color: orange; text-align: center;'>Please enter a prompt.</p>" |
|
|
|
key = random.randint(0, 999) |
|
print(f"\n--- Generation {key} Started ---") |
|
|
|
|
|
try: |
|
|
|
translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt) |
|
except Exception as e: |
|
print(f"Translation failed: {e}. Using original prompt.") |
|
translated_prompt = prompt |
|
|
|
|
|
final_prompt = f"{translated_prompt} | ultra detail, ultra elaboration, ultra quality, perfect." |
|
print(f'Generation {key} prompt: {final_prompt}') |
|
|
|
|
|
payload = { |
|
"inputs": final_prompt, |
|
"parameters": { |
|
"width": width, |
|
"height": height, |
|
"num_inference_steps": steps, |
|
"negative_prompt": negative_prompt, |
|
"guidance_scale": cfg_scale, |
|
"seed": seed if seed != -1 else random.randint(1, 1000000000), |
|
} |
|
|
|
} |
|
|
|
|
|
try: |
|
if not headers: |
|
print("WARNING: Authorization header is missing (HF_READ_TOKEN not set?)") |
|
|
|
return None, "<p style='color: red; text-align: center;'>Configuration Error: API Token missing.</p>" |
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) |
|
response.raise_for_status() |
|
|
|
image_bytes = response.content |
|
|
|
if not image_bytes or len(image_bytes) < 100: |
|
print(f"Error: Received empty or very small response content (length: {len(image_bytes)}). Potential API issue.") |
|
return None, "<p style='color: red; text-align: center;'>API returned invalid image data.</p>" |
|
|
|
try: |
|
image = Image.open(io.BytesIO(image_bytes)) |
|
except UnidentifiedImageError as img_err: |
|
print(f"Error: Could not identify or open image from API response bytes: {img_err}") |
|
|
|
|
|
|
|
|
|
return None, "<p style='color: red; text-align: center;'>Failed to process image data from API.</p>" |
|
|
|
|
|
filename = f"{int(time.time())}_{uuid.uuid4().hex[:8]}.png" |
|
|
|
save_path = os.path.join(IMAGE_DIR, filename) |
|
absolute_save_path = os.path.abspath(save_path) |
|
|
|
try: |
|
|
|
image.save(save_path, "PNG") |
|
|
|
|
|
if os.path.exists(save_path): |
|
file_size = os.path.getsize(save_path) |
|
if file_size < 100: |
|
print(f"WARNING: Saved file {save_path} is very small ({file_size} bytes). May indicate an issue.") |
|
|
|
|
|
else: |
|
|
|
print(f"CRITICAL ERROR: File NOT found at {save_path} (Absolute: {absolute_save_path}) immediately after saving!") |
|
return image, "<p style='color: red; text-align: center;'>Internal Error: Failed to confirm image file save.</p>" |
|
|
|
|
|
space_name = "greendra-stable-diffusion-3-5-large-serverless" |
|
|
|
relative_file_url = f"/gradio_api/file={save_path}" |
|
|
|
encoded_file_url = quote(relative_file_url) |
|
|
|
arinteli_url = f"{ARINTELI_REDIRECT_BASE}?download_url={encoded_file_url}&space_name={space_name}" |
|
print(f"{arinteli_url}") |
|
|
|
|
|
download_html = ( |
|
f'<div style="text-align: center;">' |
|
f'<a href="{arinteli_url}" target="_blank" class="gr-button gr-button-lg gr-button-primary">' |
|
f'Download Image' |
|
f'</a>' |
|
f'</div>' |
|
) |
|
|
|
print(f"--- Generation {key} Done ---") |
|
return image, download_html |
|
|
|
except (OSError, IOError) as save_err: |
|
|
|
print(f"CRITICAL ERROR: Failed to save image to {save_path} (Absolute: {absolute_save_path}): {save_err}") |
|
traceback.print_exc() |
|
return image, f"<p style='color: red; text-align: center;'>Internal Error: Failed to save image file. Details: {save_err}</p>" |
|
except Exception as e: |
|
|
|
print(f"Error during link creation or unexpected save issue: {e}") |
|
traceback.print_exc() |
|
|
|
return image, "<p style='color: red; text-align: center;'>Internal Error creating download link.</p>" |
|
|
|
|
|
except requests.exceptions.Timeout: |
|
print(f"Error: Request timed out after {timeout} seconds.") |
|
return None, "<p style='color: red; text-align: center;'>Request timed out. The model is taking too long.</p>" |
|
except requests.exceptions.HTTPError as e: |
|
|
|
status_code = e.response.status_code |
|
error_text = e.response.text |
|
try: |
|
|
|
error_data = e.response.json() |
|
error_text = error_data.get('error', error_text) |
|
if isinstance(error_text, dict) and 'message' in error_text: |
|
error_text = error_text['message'] |
|
except json.JSONDecodeError: |
|
pass |
|
|
|
print(f"Error: Failed API call. Status: {status_code}, Response: {error_text}") |
|
|
|
|
|
if status_code == 503: |
|
estimated_time = error_data.get("estimated_time") if 'error_data' in locals() and isinstance(error_data, dict) else None |
|
if estimated_time: |
|
error_message = f"Model is loading (503), please wait. Est. time: {estimated_time:.1f}s. Try again." |
|
else: |
|
error_message = f"Service unavailable (503). Model might be loading or down. Try again later." |
|
elif status_code == 400: |
|
error_message = f"Bad Request (400): Check parameters. API Error: {error_text}" |
|
elif status_code == 422: |
|
error_message = f"Validation Error (422): Input invalid. API Error: {error_text}" |
|
elif status_code == 401 or status_code == 403: |
|
error_message = f"Authorization Error ({status_code}): Check your API Token (HF_READ_TOKEN)." |
|
else: |
|
error_message = f"API Error: {status_code}. Details: {error_text}" |
|
|
|
|
|
return None, f"<p style='color: red; text-align: center;'>{error_message}</p>" |
|
except Exception as e: |
|
|
|
print(f"An unexpected error occurred: {e}") |
|
traceback.print_exc() |
|
return None, f"<p style='color: red; text-align: center;'>An unexpected error occurred: {e}</p>" |
|
|
|
|
|
|
|
css = """ |
|
#app-container { |
|
max-width: 800px; |
|
margin-left: auto; |
|
margin-right: auto; |
|
} |
|
textarea:focus { |
|
background: #0d1117 !important; |
|
} |
|
#download-link-container p { /* Style the link container */ |
|
margin-top: 10px; /* Add some space above the link */ |
|
font-size: 0.9em; /* Slightly smaller text for the link message */ |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: |
|
gr.HTML("<center><h1>Stable Diffusion 3.5 Large Turbo</h1></center>") |
|
|
|
with gr.Column(elem_id="app-container"): |
|
|
|
with gr.Row(): |
|
with gr.Column(elem_id="prompt-container"): |
|
with gr.Row(): |
|
text_prompt = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Enter a prompt here", |
|
lines=2, |
|
elem_id="prompt-text-input" |
|
) |
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
placeholder="What should not be in the image", |
|
value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", |
|
lines=3, |
|
elem_id="negative-prompt-text-input" |
|
) |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32) |
|
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32) |
|
steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=8, step=1) |
|
cfg = gr.Slider(label="CFG Scale (guidance_scale)", value=0, minimum=0, maximum=10, step=1) |
|
|
|
|
|
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1, info="Set to -1 for random seed") |
|
|
|
|
|
|
|
|
|
with gr.Row(): |
|
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") |
|
|
|
|
|
with gr.Row(): |
|
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") |
|
with gr.Row(): |
|
|
|
download_link_display = gr.HTML(elem_id="download-link-container") |
|
|
|
|
|
|
|
text_button.click( |
|
query, |
|
|
|
inputs=[text_prompt, negative_prompt, steps, cfg, seed, width, height], |
|
|
|
outputs=[image_output, download_link_display] |
|
) |
|
|
|
|
|
print("Starting Gradio app...") |
|
|
|
app.launch( |
|
show_api=False, |
|
share=False, |
|
allowed_paths=[absolute_image_dir] |
|
) |