import gradio as gr from fastapi import FastAPI from pydantic import BaseModel from transformers import pipeline app = FastAPI() moderate_pipe = pipeline("text-classification", model="KoalaAI/Text-Moderation") class TextInput(BaseModel): text: str @app.post("/moderate") async def moderate_text(input: TextInput): results = moderate_pipe(input.text) return {r["label"]: r["score"] for r in results} # Gradio interface to expose the model API via a Space gr.Interface(fn=moderate_text, inputs="text", outputs="json").launch()