CATvsDOG / app.py
gridflowai's picture
Upload 4 files
054bb10
raw
history blame contribute delete
950 Bytes
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np
# Load the pre-trained model
model = tf.keras.models.load_model('model.h5') # Replace with the path to your saved model
# Define a Gradio interface for image classification
def classify_image(image):
# Preprocess the input image
image = Image.fromarray(image)
image = image.resize((128, 128))
image = np.array(image)
image = image / 255.0 # Normalize the pixel values
# Make a prediction
prediction = model.predict(np.expand_dims(image, axis=0))
# Get the class label
class_label = "Dog" if prediction[0][0] < 0.5 else "Cat"
return class_label
# Create a Gradio interface
iface = gr.Interface(fn=classify_image,
inputs="image",
outputs="text",
capture_session=True)
# Launch the Gradio interface
iface.launch(server_name="0.0.0.0", server_port=7860)