Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
# Load the pre-trained model | |
model = tf.keras.models.load_model('model.h5') # Replace with the path to your saved model | |
# Define a Gradio interface for image classification | |
def classify_image(image): | |
# Preprocess the input image | |
image = Image.fromarray(image) | |
image = image.resize((128, 128)) | |
image = np.array(image) | |
image = image / 255.0 # Normalize the pixel values | |
# Make a prediction | |
prediction = model.predict(np.expand_dims(image, axis=0)) | |
# Get the class label | |
class_label = "Dog" if prediction[0][0] < 0.5 else "Cat" | |
return class_label | |
# Create a Gradio interface | |
iface = gr.Interface(fn=classify_image, | |
inputs="image", | |
outputs="text", | |
capture_session=True) | |
# Launch the Gradio interface | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |