Spaces:
Sleeping
Sleeping
import gradio as gr | |
import joblib | |
import numpy as np | |
from PIL import Image | |
from sklearn.preprocessing import StandardScaler | |
# Load the trained SVM model and scaler | |
clf = joblib.load('svm_model.pkl') | |
scaler = joblib.load('scaler.pkl') | |
# Define a function to preprocess and classify the image | |
def classify_image(input_image): | |
# Check if the input is a NumPy array | |
if isinstance(input_image, np.ndarray): | |
# Preprocess the input image | |
image = Image.fromarray(input_image) | |
image = image.resize((64, 64)) | |
image = np.array(image) | |
image = image / 255.0 # Normalize the pixel values | |
flattened_image = image.flatten() | |
# Scale the image using the same scaler used during training | |
scaled_image = scaler.transform([flattened_image]) | |
# Make a prediction using the SVM model | |
prediction = clf.predict(scaled_image) | |
# Interpret the prediction | |
if prediction[0] == 1: | |
label = "Cat" | |
else: | |
label = "Dog" | |
return label | |
else: | |
return "Invalid input. Please provide a valid image." | |
# Create a Gradio interface | |
iface = gr.Interface(fn=classify_image, | |
inputs="image", | |
outputs="text", | |
live=True, | |
capture_session=True) | |
# Launch the Gradio interface | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |