Spaces:
Sleeping
Sleeping
File size: 10,391 Bytes
4228d91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
import time
st.set_page_config(layout="wide")
st.markdown("#### Clustering in AI - (unsupervised modeling)")
# Section 1: What is clustering?
with st.expander("๐ What is clustering, and why is it relevant in business?"):
st.markdown("""
Clustering is an **unsupervised machine learning technique** that groups similar data points together.
It's commonly used in:
- **Customer segmentation** (e.g., marketing campaigns)
- **Anomaly detection** (e.g., fraud or system failures)
- **Document categorization**
Clustering helps discover **patterns** without labeled data, making it extremely useful in business scenarios where manual labeling is costly or infeasible.
""")
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
# Set plot style
sns.set(style="whitegrid")
# --- 1. Customer Segmentation ---
st.markdown("###### ๐ 1. Customer Segmentation")
st.write("Imagine customers represented by their **age** and **spending score**. Clustering reveals distinct customer groups.")
X_seg, _ = make_blobs(n_samples=300, centers=4, cluster_std=1.0, random_state=42)
kmeans_seg = KMeans(n_clusters=4, random_state=42).fit(X_seg)
labels_seg = kmeans_seg.labels_
fig1, ax1 = plt.subplots(figsize=(9,4))
scatter1 = ax1.scatter(X_seg[:, 0], X_seg[:, 1], c=labels_seg, cmap='Accent')
ax1.set_xlabel("Age")
ax1.set_ylabel("Spending Score")
ax1.set_title("Customer Segmentation Clusters")
st.pyplot(fig1)
st.markdown("""
**Interpretation:**
Each cluster corresponds to a distinct customer segment, like:
- High spenders vs budget-conscious
- Young vs older demographics
This allows targeted marketing and better personalization.
""")
# --- 2. Anomaly Detection ---
st.markdown("###### ๐จ 2. Anomaly Detection")
st.write("Letโs simulate normal system activity with a few injected anomalies.")
X_anom, _ = make_blobs(n_samples=290, centers=1, cluster_std=1.0, random_state=42)
anomalies = np.random.uniform(low=-6, high=6, size=(10, 2))
X_anom_combined = np.vstack([X_anom, anomalies])
kmeans_anom = KMeans(n_clusters=1, random_state=42).fit(X_anom_combined)
distances = np.linalg.norm(X_anom_combined - kmeans_anom.cluster_centers_[0], axis=1)
threshold = np.percentile(distances, 95)
outliers = distances > threshold
fig2, ax2 = plt.subplots(figsize=(9,4))
ax2.scatter(X_anom_combined[~outliers, 0], X_anom_combined[~outliers, 1], label="Normal", alpha=0.6)
ax2.scatter(X_anom_combined[outliers, 0], X_anom_combined[outliers, 1], color='red', label="Anomaly")
ax2.set_title("Anomaly Detection using Clustering")
ax2.legend()
st.pyplot(fig2)
st.markdown("""
**Interpretation:**
Data points that are **far from the cluster center** are flagged as anomalies.
Great for:
- Fraud detection
- Network intrusion
- Fault detection in systems
""")
# --- 3. Document Categorization ---
st.markdown("###### ๐ 3. Document Categorization")
st.write("Assume each document is reduced to 2D space using techniques like TF-IDF + PCA.")
X_docs, _ = make_blobs(n_samples=300, centers=3, cluster_std=1.2, random_state=7)
kmeans_docs = KMeans(n_clusters=3, random_state=7).fit(X_docs)
fig3, ax3 = plt.subplots(figsize=(9,4))
ax3.scatter(X_docs[:, 0], X_docs[:, 1], c=kmeans_docs.labels_, cmap='Set2')
ax3.set_title("Clustering Documents into Categories")
ax3.set_xlabel("Topic Vector 1")
ax3.set_ylabel("Topic Vector 2")
st.pyplot(fig3)
st.markdown("""
**Interpretation:**
Clustering helps group similar documents or articles (e.g., tech, sports, health) without prior labels.
It's used in:
- News aggregation
- Content recommendation
- Automated document organization
""")
# Section 2: Key characteristics
with st.expander("๐ง Key characteristics of clustering (Human-in-the-loop)"):
st.markdown("""
- No predefined labels โ clustering is exploratory.
- Requires defining **number of clusters (K)** manually in many algorithms like K-Means.
- Human input is essential for:
- **Interpreting cluster meanings**
- **Validating business relevance**
- **Tuning parameters like K or distance metrics**
This is where **"human-in-the-loop"** comes in โ domain experts make sense of the clusters produced.
""")
# --- 1. Standard Numeric Dataset ---
st.markdown("###### ๐งฎ 1. Standard Numeric Dataset (e.g., Customer Features)")
import pandas as pd
import numpy as np
df_numeric = pd.DataFrame({
"Age": np.random.randint(18, 65, size=5),
"Annual Income ($)": np.random.randint(20000, 100000, size=5),
"Spending Score": np.random.randint(1, 100, size=5),
"Cluster_Label": ["" for _ in range(5)]
})
st.dataframe(df_numeric)
# --- 2. Text Dataset ---
st.markdown("###### โ๏ธ 2. Text Dataset (e.g., Customer Reviews)")
df_text = pd.DataFrame({
"Review_Text": [
"Great product, loved the quality!",
"Terrible support. Never buying again.",
"Okay-ish experience. Could be better.",
"Fast delivery and nice packaging.",
"Didn't meet my expectations."
],
"Cluster_Label": ["" for _ in range(5)]
})
st.dataframe(df_text)
# --- 3. Image Dataset ---
st.markdown("###### ๐ผ๏ธ 3. Image Dataset (e.g., Pixel Vectors)")
df_image = pd.DataFrame(np.random.randint(0, 256, size=(5, 10)), columns=[f"Pixel_{i}" for i in range(10)])
df_image["Cluster_Label"] = ""
st.dataframe(df_image)
st.markdown("""
**Notice:**
There are **no predefined labels** (`Cluster_Label` is empty).
Clustering algorithms group the rows based on internal patterns, and **humans interpret what those groupings mean**.
""")
# Section 3: Custom K-Means visualization
with st.expander("๐ Visualizing K-Means Clustering (Custom Implementation)"):
st.markdown("K-Means Clustering Demonstration (Custom Implementation)")
# Sidebar parameters
num_points = st.sidebar.slider("Number of points per cluster", 10, 100, 50)
cluster_sep = st.sidebar.slider("Cluster separation", 0.5, 5.0, 2.0)
sleep_interval = st.sidebar.slider("Sleep interval (seconds)", 0.1, 2.0, 0.5)
show_table = st.sidebar.checkbox("Show cluster table")
# Generate synthetic data
@st.cache_data
def generate_data(num_points, cluster_sep):
points, _ = make_blobs(n_samples=num_points*3, centers=3, cluster_std=cluster_sep, n_features=2, random_state=42)
return points
points = generate_data(num_points, cluster_sep)
# Random centers
np.random.seed(42)
centers = np.column_stack((
np.random.uniform(-10, 10, 3),
np.random.uniform(-10, 5, 3)
))
def calculate_distances(points, centers):
return np.linalg.norm(points[:, np.newaxis] - centers, axis=2)
fig, axes = plt.subplots(4, 3, figsize=(12, 16))
num_iterations = 12
for iteration in range(num_iterations):
distances = calculate_distances(points, centers)
closest = np.argmin(distances, axis=1)
df = pd.DataFrame(points, columns=['x1', 'x2'])
for i in range(3):
df[f'dist_to_center_{i+1}'] = distances[:, i]
df['closest_center'] = closest
row, col = divmod(iteration, 3)
ax = axes[row, col]
colors = ['red', 'green', 'blue']
for i in range(3):
cluster = df[df['closest_center'] == i]
ax.scatter(cluster['x1'], cluster['x2'], color=colors[i], s=5, label=f'Cluster {i+1}')
ax.scatter(centers[i][0], centers[i][1], color='black', marker='x', s=50, linewidths=2)
ax.set_title(f"Iteration {iteration + 1}", fontsize=8)
ax.set_xlabel("x1", fontsize=8)
ax.set_ylabel("x2", fontsize=8)
ax.tick_params(labelsize=6)
ax.legend(fontsize=6)
# Update centers
centers = np.array([df[df['closest_center'] == i][['x1', 'x2']].mean() for i in range(3)])
time.sleep(sleep_interval)
st.pyplot(fig)
if show_table:
def highlight_min(s): return ['background-color: lightgreen' if v == s.min() else '' for v in s]
st.dataframe(df.style.apply(highlight_min, subset=[f'dist_to_center_{i+1}' for i in range(3)]))
# Section 4: Evaluating with the Elbow Method
with st.expander("๐ How do we know if clustering worked well (Elbow Method)?"):
st.markdown("""
The **Elbow Method** helps identify the optimal number of clusters (K).
- Plot the **inertia** (sum of squared distances from points to their cluster center) for different K.
- The 'elbow' point in the curve is the ideal number of clusters.
A sharp drop followed by a plateau indicates the elbow.
This technique avoids both under- and over-clustering.
""")
from sklearn.cluster import KMeans
X = generate_data(100, 1.5)
inertias = []
Ks = range(1, 10)
for k in Ks:
km = KMeans(n_clusters=k, n_init="auto", random_state=42)
km.fit(X)
inertias.append(km.inertia_)
fig2, ax2 = plt.subplots()
ax2.plot(Ks, inertias, marker='o')
ax2.set_title("Elbow Method for Optimal K")
ax2.set_xlabel("Number of Clusters (K)")
ax2.set_ylabel("Inertia")
st.pyplot(fig2)
# Section 5: Challenges and Alternatives
with st.expander("โ ๏ธ Challenges with K-Means & Alternatives"):
st.markdown("""
**K-Means limitations:**
- Requires choosing K manually
- Assumes clusters are spherical and equal-sized
- Sensitive to outliers and initial center placement
**Variants / Alternatives:**
- **K-Medoids**: More robust to outliers
- **DBSCAN**: Density-based, no need to specify K
- **Hierarchical Clustering**: Builds a tree of clusters
- **Gaussian Mixture Models (GMM)**: Probabilistic soft clustering
Use-case and data characteristics often guide which method to choose.
""")
|