File size: 24,664 Bytes
ce707b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import cross_validate
import time
from sklearn.model_selection import learning_curve

def show_intro():
    with st.expander(f"➡️ What is Regression?"):
        st.markdown("""
        **Regression** is a fundamental statistical technique used to understand and quantify the relationship between a **dependent variable (what you want to predict)** and one or more **independent variables (predictors)**.

        ---
        ###### 🔍 Everyday Examples of Regression:
        - 📈 Predicting **house prices** based on size, location, and number of bedrooms.
        - 🎓 Estimating a student’s **final grade** based on hours of study and attendance.
        - 🚗 Forecasting **fuel efficiency** based on engine size and weight of the car.
        - 🧠 Predicting **IQ scores** or **height** based on parental traits (enter Galton! 👇)
        
        ---

        ###### 👨‍👩‍👧‍👦 Galton’s Theory – *Regression to the Mean*
        Sir Francis Galton, a 19th-century statistician and cousin of Charles Darwin, studied the heights of parents and their children. 

        He observed:
        - Very tall parents tended to have children **shorter** than themselves.
        - Very short parents tended to have children **taller** than themselves.
        
        🧠 He coined the term **"regression to the mean"**, which means:
        > "Extreme traits tend to be followed by traits closer to the average in the next generation."

        ---
        ###### 👶 Real-Life Example:
        - If both parents are exceptionally tall (say, 6'5"), their child is **likely tall**, but **closer to the average height** than the parents — maybe 6'2".
        - Similarly, if parents are very short, the child’s height tends to “regress” toward the average population height.

        This pattern **doesn't mean height is random**, just that genetics and environment **pull traits toward typical values** over time.

        ---
        Regression models in ML extend this idea — instead of modeling parent-child height, we model **any continuous outcome** based on relevant input variables.
        """)
        
    with st.expander("➡️ Industry Use-Cases of Regression Models"):
        st.markdown("""
        ###### 🏥 Healthcare
        - 🔬 Estimating **patient recovery time** based on age, treatment type, and initial condition.
        - 💉 Predicting **blood glucose levels** based on dietary habits and medication dosage.
        - 🫀 Forecasting **hospital readmission rates** based on prior health records and discharge details.

        ###### 🛒 Retail
        - 📦 Predicting **sales volume** based on pricing, seasonality, and promotional campaigns.
        - 🛍️ Estimating **inventory demand** for specific SKUs using historical sales and trends.
        - 👗 Forecasting **customer churn** likelihood using past purchase behavior and returns.

        ###### 🛍️ E-commerce
        - 💸 Predicting **customer lifetime value (CLV)** based on purchase frequency and basket size.
        - 🚚 Estimating **delivery time** based on warehouse location, item type, and order volume.
        - 🧾 Forecasting **return probability** of products based on description, images, and reviews.

        ###### 💰 Finance
        - 📊 Predicting **stock prices** or **bond yields** based on historical trends and market indicators.
        - 🏦 Estimating **credit risk** or **loan default probability** using income, credit history, etc.
        - 💳 Forecasting **spending patterns** on credit cards based on customer behavior.

        ###### 💊 Pharma & Life Sciences
        - 🧪 Predicting **drug efficacy** based on dosage and patient demographics in clinical trials.
        - 🦠 Estimating **disease progression** timelines based on early symptoms and test results.
        - 💊 Forecasting **adverse drug reactions** from formulation and patient profiles.
        """)
        
def simple_regression_example():
    with st.expander("➡️ Single Variable Regression (Manual Calculation)"):
        # Sample data
        advertising_spend = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
        sales_revenue = np.array([2.1, 3.9, 5.2, 6.0, 7.1, 8.1, 9.0, 10.2, 10.8, 12.0])

        # Regression coefficients (manual calculation)
        x_mean = np.mean(advertising_spend)
        y_mean = np.mean(sales_revenue)
        b1 = np.sum((advertising_spend - x_mean) * (sales_revenue - y_mean)) / np.sum((advertising_spend - x_mean)**2)
        b0 = y_mean - b1 * x_mean
        predicted_sales = b0 + b1 * advertising_spend

        # Two-column layout
        col1, col2 = st.columns(2)

        with col1:
            st.markdown("###### 📊 Sample Data")
            df = pd.DataFrame({
                'Advertising Spend (in lakhs)': advertising_spend,
                'Sales Revenue (in lakhs)': sales_revenue
            })
            st.dataframe(df)

        with col2:
            st.markdown("###### 📉 Linear Regression Formula")
            st.markdown(f"""
            The linear regression equation is:  
            **Sales Revenue = {b0:.2f} + {b1:.2f} × Advertising Spend**
            
            Where:  
            - **b₀ (Intercept)**: Sales revenue when advertising spend is zero.  
            - **b₁ (Slope)**: Increase in revenue for each additional lakh spent.

            ###### Formula for Computing Coefficients
            - **b₁ (Slope)** = (Σ(xᵢ - x̄)(yᵢ - ȳ)) / Σ(xᵢ - x̄)²  
            - **b₀ (Intercept)** = ȳ - b₁ × x̄
            """)

        # Plotting the regression line
        fig, ax = plt.subplots(figsize=(9,4))
        ax.scatter(advertising_spend, sales_revenue, color='blue', label='Actual')
        ax.plot(advertising_spend, predicted_sales, color='red', label='Fitted Line')
        ax.set_xlabel("Advertising Spend (in lakhs)", fontsize=10)
        ax.set_ylabel("Sales Revenue (in lakhs)", fontsize=10)
        ax.set_title("Linear Regression: Advertising Spend vs Sales Revenue", fontsize=10)
        ax.tick_params(axis='both', labelsize=8)
        ax.legend()
        st.pyplot(fig)

    with st.expander("➡️ Predict Sales Revenue from Advertising Spend"):
        st.markdown(f"Use the trained regression model to forecast expected sales revenue 📈")

        user_input = st.number_input(
            "Enter Advertising Spend (in lakhs)", 
            min_value=1.0, 
            max_value=20.0, 
            value=5.0, 
            step=0.5, 
            format="%.1f"
        )

        if user_input:
            predicted_value = b0 + b1 * user_input
            st.success(f"🔮 Predicted Sales Revenue: **{predicted_value:.2f} lakhs**")

            # Visualize prediction on the regression chart
            fig, ax = plt.subplots(figsize=(9,4))
            ax.scatter(advertising_spend, sales_revenue, color='blue', label='Actual')
            ax.plot(advertising_spend, predicted_sales, color='red', label='Fitted Line')

            # Add dashed lines for prediction
            ax.axvline(x=user_input, color='red', linestyle='--', linewidth=1)
            ax.axhline(y=predicted_value, color='red', linestyle='--', linewidth=1)
            ax.plot(user_input, predicted_value, 'ro')  # predicted point

            ax.set_xlabel("Advertising Spend (in lakhs)", fontsize=10)
            ax.set_ylabel("Sales Revenue (in lakhs)", fontsize=10)
            ax.set_title("Prediction on Regression Line", fontsize=10)
            ax.tick_params(axis='both', labelsize=8)
            ax.legend()
            st.pyplot(fig)
            
    with st.expander("➡️ Key Takeaways ..."):
        st.markdown("""
        - 🔍 **Simplicity with Impact**: Even a simple linear model offers valuable foresight—linking investments (like ad spend) directly to outcomes (like sales revenue).
        - 📊 **Data-Driven Decisions**: Enables leadership to make **objective** decisions, backed by quantitative evidence rather than gut feel.
        - 🎯 **Budget Optimization**: Helps identify how much to invest to hit revenue targets—minimizing under or over-spending on campaigns.
        - 📈 **Trend Insights**: Understanding whether returns from increased spending are **linear**, diminishing, or plateauing over time.
        - 🧪 **Foundation for More Advanced Models**: This simple regression builds the base for multivariable models involving seasonality, regions, or digital channels.
        """)


def load_ca_data():
    data = fetch_california_housing(as_frame=True)
    X = data.frame.drop(['MedHouseVal'], axis=1)
    y = data.frame['MedHouseVal']
    return data.frame, X,y

def vif_check(df):
    X = df.drop(columns=['MedHouseVal'])
    vif_data = pd.DataFrame()
    vif_data["feature"] = X.columns
    vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    return vif_data, X, df['MedHouseVal']

def build_model(X_train, y_train):
    model = LinearRegression()
    model.fit(X_train, y_train)
    return model

def main():
    st.markdown(f"**🧠 Regression Intuitions - Linear Regression Demo**")
    
    show_intro()
    
    simple_regression_example()
    
    with st.expander("➡️ Load & View California Housing Dataset"):
        df, X, y = load_ca_data()
        st.dataframe(df.head())
        
        st.markdown("""
            The **California Housing Dataset** is based on data from the 1990 U.S. Census.  
            It contains information collected from block groups across California and is often used for regression tasks to predict housing values.

            ###### 📌 Columns Description:

            - **MedInc** *(Median Income)*: Median income of households in the block group (in tens of thousands of dollars).
            - **HouseAge** *(Median House Age)*: Median age of houses in the area.
            - **AveRooms** *(Average Rooms)*: Average number of rooms per household.
            - **AveBedrms** *(Average Bedrooms)*: Average number of bedrooms per household.
            - **Population**: Total population of the block group.
            - **AveOccup** *(Average Occupancy)*: Average number of people per household.
            - **Latitude**: Geographical latitude of the block group.
            - **Longitude**: Geographical longitude of the block group.

            ###### 🎯 Target Column:
            - **MedHouseVal** *(Median House Value)*: This is the target variable to be predicted.  
            It represents the **median house value** in the block group (in hundreds of thousands of dollars).
            """)
        
        st.markdown("###### 🗺️ California Housing: Prices by Location")

        fig, ax = plt.subplots(figsize=(12, 5))
        scatter = ax.scatter(
            df["Longitude"], 
            df["Latitude"], 
            c=df["MedHouseVal"], 
            cmap="viridis", 
            s=10, 
            alpha=0.5
        )

        ax.set_title("Median House Value across California", fontsize=14)
        ax.set_xlabel("Longitude")
        ax.set_ylabel("Latitude")
        ax.grid(True)

        # Add color bar to represent house value
        cbar = plt.colorbar(scatter, ax=ax)
        cbar.set_label("Median House Value ($100,000s)")
        
        # Annotate major cities
        ax.annotate("Los Angeles", xy=(-118.25, 34.05), xytext=(-121, 33.8),
                    arrowprops=dict(facecolor='red', arrowstyle="->"), fontsize=10, color='red')
        ax.annotate("San Francisco", xy=(-122.42, 37.77), xytext=(-125, 38.5),
                    arrowprops=dict(facecolor='blue', arrowstyle="->"), fontsize=10, color='blue')

        # Shade ocean region (rough approximation: west of longitude -123)
        ax.axvspan(-125, -123, color='lightblue', alpha=0.3, label="Pacific Ocean")

        # Add legend
        ax.legend(loc="lower right")

        st.pyplot(fig)
        
        st.write(f"""
                 - Color represents housing value: darker → cheaper, lighter → more expensive.
                 - notice high-value clusters around coastal regions (e.g., around the Bay Area and Los Angeles).
                  """
                  )
    
    with st.expander("➡️ Key Challenges of California Housing Dataset (Regression vs Rule-Based Models)"):
        st.markdown("""
        Understanding the limitations of both data and modeling approaches is vital for leaders making data-driven decisions. Below are the key challenges when using this dataset for **regression modeling**, especially compared to traditional **rule-based systems**:

        ###### 🔍 Data Challenges (Specific to Regression):
        - **Non-linear Relationships**: Housing prices may not increase proportionally with income, age, or other features, making simple linear models insufficient.
        - **Geographic Bias**: Locations like LA and SF have unique dynamics not captured by standard features—housing is expensive due to factors beyond income or age.
        - **Data Outliers**: Some neighborhoods may have unusually high or low prices, skewing the model's predictions.
        - **Capped Target Values**: The `MedHouseVal` was capped at $500,000 in the dataset, which can limit the model's ability to predict higher-end housing.

        ###### 🤖 Compared to Rule-Based Models:
        - **Rule-based systems lack adaptability**: Rules like "if income > X, price > Y" cannot account for regional nuances, housing density, or socio-economic patterns.
        - **Hard to scale**: Adding new rules for every edge case becomes complex and unmanageable over time.
        - **Not data-driven**: Rule-based logic does not improve from historical data or learn from new patterns.

        ###### 🧭 Key Takeaway:
        > Regression models offer adaptability and learning from patterns across vast geographies and populations. However, they require clean, unbiased data and continuous validation—unlike rule-based systems, which are simple but brittle and not future-proof.
        """)
    
    # with st.expander("➡️Linearity Check & VIF"):
    #     vif_data, X, y = vif_check(df)
    #     st.dataframe(vif_data)
    
    with st.expander("➡️ Prepare Data for the regression model"):
        
        st.markdown("""
        Creating training and test datasets is a fundamental step in building machine learning models. It ensures the model learns patterns **only from part of the data**, and is then **evaluated on unseen data** to measure its performance.

        ###### 🔧 Why Prepare Data?
        - **Ensures Model Quality**: Models need structured and clean data to learn effectively.
        - **Prevents Overfitting**: By separating training from testing, we prevent the model from simply memorizing the data.
        - **Enables Generalization**: A well-prepared dataset ensures the model can make accurate predictions on new, real-world data.

        ###### 📦 Train-Test Split
        - **Training Set**: Used by the model to learn patterns and relationships between input (features) and output (target).
        - **Test Set**: Held back during training and used solely to evaluate model performance. It simulates how the model would perform in production.

        ###### ✅ Best Practices
        - **Use an 80/20 or 70/30 split** depending on dataset size.
        - **Stratify** if your target variable is imbalanced (more applicable in classification).
        - **Set a random seed** (e.g., `random_state=42`) for reproducibility.
        - **Clean and preprocess** before splitting to avoid data leakage.
        - **Avoid using test data during model training or tuning**—this ensures an unbiased evaluation.

        > 🔍 **Key point**: Proper data preparation is like setting the foundation of a building—without it, even the most advanced models can crumble in production.
        """)
            
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        
        # Display the number of samples in training and testing sets
        st.write(f"Number of samples in training set: {X_train.shape[0]}")
        st.write(f"Number of samples in testing set: {X_test.shape[0]}")
        st.write("Train and test sets created.")
    
    with st.expander("➡️ Build Linear Regression Model"):
        #model = build_model(X_train, y_train)
        
        st.write("Training the Linear Regression model...")

        # Simulate training with progress bar
        progress_bar = st.progress(0)
        for i in range(100):
            time.sleep(0.01)
            progress_bar.progress(i + 1)

        # Train the model
        model = LinearRegression()
        model.fit(X_train, y_train)
        st.success("Model trained successfully.")

        # Predict and compute metrics
        y_pred = model.predict(X_test)
        mae = mean_absolute_error(y_test, y_pred)
        mse = mean_squared_error(y_test, y_pred)
        rmse = np.sqrt(mse)
        r2 = r2_score(y_test, y_pred)

        st.markdown("###### 📊 Model Evaluation on Test Set")
        st.write(f"**MAE**: {mae:.2f}")
        st.write(f"**MSE**: {mse:.2f}")
        st.write(f"**RMSE**: {rmse:.2f}")
        st.write(f"**R² Score**: {r2:.2f}")

        # Cross-validation to detect overfitting
        st.markdown("###### 🔁 Cross-Validation Performance")
        cv_results = cross_validate(model, X, y, cv=10, return_train_score=True, scoring='r2')
        train_r2 = cv_results['train_score']
        test_r2  = cv_results['test_score']

        r2_df = pd.DataFrame({
            'Fold': list(range(1, 11)),
            'Training R²': train_r2,
            'Test R²': test_r2
        })

        fig, ax = plt.subplots(figsize=(9,5))
        ax.plot(r2_df['Fold'], r2_df['Training R²'], marker='o', label='Training R²', color='blue')
        ax.plot(r2_df['Fold'], r2_df['Test R²'], marker='o', label='Test R²', color='green')
        ax.set_title("Cross-Validation R² Scores")
        ax.set_xlabel("Fold")
        ax.set_ylabel("R² Score")
        ax.legend()
        ax.grid(True)
        st.pyplot(fig)

        st.dataframe(r2_df.style.format({'Training R²': '{:.2f}', 'Test R²': '{:.2f}'}))
        
        st.write("""
            - ✅ **Consistent Training Performance**:  
            The training R² scores range from **0.59 to 0.63**, indicating a fairly **consistent learning pattern** across all 10 folds.  
            This means the model generalizes reasonably well on the training data.

            - ⚠️ **Test Set Variability**:  
            The test R² scores range from **0.42 to 0.61**, showing **slightly higher variance** across folds.  
            Some folds show strong performance (e.g., Fold 2), while others drop noticeably (e.g., Fold 3).

            - 🔁 **No Severe Overfitting Detected**:  
            If the training R² was very high (e.g., 0.9) and test R² was low (e.g., 0.3), that would indicate **overfitting**.  
            In this case, **training and test R² are fairly close**, suggesting the model is **not overfitting significantly**.

            - 📉 **Room for Improvement**:  
            An average test R² around **0.52** implies that the model explains **just over 50% of the variance** in house values.  
            For business-critical applications like real estate pricing or policy decisions, we may consider:
                - **Feature engineering** (e.g., regional segmentation),
                - **Model tuning**, or
                - **Trying more expressive models** like decision trees or gradient boosting.

            """)
    
    # learning curve
    with st.expander("➡️ Was Training Data Sufficient? (Learning Curve Analysis)"):
        st.markdown("###### 📊 Learning Curve Analysis")

        # Generate learning curves
        train_sizes, train_scores, test_scores = learning_curve(
            model, X, y, cv=5, scoring='r2', train_sizes=np.linspace(0.1, 1.0, 10), shuffle=True, random_state=42
        )

        # Calculate mean and std deviation
        train_scores_mean = np.mean(train_scores, axis=1)
        test_scores_mean = np.mean(test_scores, axis=1)

        # Plotting
        fig, ax = plt.subplots(figsize=(9,4))
        ax.plot(train_sizes, train_scores_mean, 'o-', color="blue", label="Training R²")
        ax.plot(train_sizes, test_scores_mean, 'o-', color="green", label="Validation R²")
        ax.set_title("Learning Curve: Linear Regression")
        ax.set_xlabel("Number of Training Samples")
        ax.set_ylabel("R² Score")
        ax.legend(loc="best")
        ax.grid(True)
        st.pyplot(fig)

        # Interpret results
        st.write("""
        - ✅ **Training R² is high initially** (indicating the model learns patterns even with fewer samples).
        - 📉 **Validation R² improves as training size increases**, then plateaus.
        - 🧠 This suggests the model **benefits from more training data**, but after a certain point, **additional data does not significantly improve generalization**.
        - 🔍 The **gap between training and validation curves** is relatively small, indicating **no severe overfitting**.
        - 📌 **Conclusion**: The current dataset size seems **adequate**, and the model is learning well with the data provided.
        """)    
        
    with st.expander("📊 Understand Feature Impact: Coefficients of the Linear Regression Model"):
        importance = model.coef_
        features = X.columns

        fig, ax = plt.subplots(figsize=(9,5))
        ax.barh(features, importance, color='skyblue')
        ax.set_title("Feature Importance (Linear Regression Coefficients)")
        ax.set_xlabel("Coefficient Value")
        st.pyplot(fig)

        st.markdown("""
        ###### 🔍 Interpretation:
        - Features with larger **absolute values** have a stronger effect on the predicted house value.
        - A **positive coefficient** increases the predicted value.
        - A **negative coefficient** decreases the predicted value.

        ###### 🧠 What it means for decision-makers:
        - **Median Income** is a strong positive driver — wealthier areas tend to have higher housing values.
        - **Latitude** has a negative coefficient — northern areas may have lower house prices.
        - Helps focus strategic decisions on what really influences prices across California.
        """)
    
    with st.expander("🧠 Why Linear Regression Still Matters: Foundation for Deep Learning & Transformers"):
        st.markdown("""
        Linear Regression may look simple, but it's far from trivial — it’s the **first building block** in the ladder to advanced AI models like **Deep Learning** and **Transformers**.

        ###### 📚 Conceptual Foundations:
        - **Weights & Bias**: The core of linear regression is about learning weights and biases — which is exactly what **every neural network layer** does, just at scale.
        - **Loss Minimization**: Linear regression minimizes **Mean Squared Error** — a principle used in training neural networks to adjust weights through **backpropagation**.
        - **Linear Combinations**: Deep learning models, at their core, are just multiple layers of **linear transformations + non-linear activations**.

        ###### 🤖 Connect to Transformers:
        - Transformer architectures (like GPT, BERT) use **linear projections** in attention mechanisms.
        - Every layer in these models performs matrix multiplications — which is, again, just advanced **linear algebra and regression-like operations**.

        ###### 🏗️ Strategic Insight:
        - A solid grasp of linear regression builds the intuition needed to understand more complex systems.
        - Senior leaders can better evaluate ML and AI project feasibility and interpret outcomes by understanding these **fundamentals that scale**.

        🔄 *"From Linear Regression to Transformers, it's all about modeling relationships and optimizing parameters — just with different levels of complexity and abstraction."*
        """)


if __name__ == "__main__":
    main()