bhupen@gridflowAI commited on
Commit
5c3c178
·
1 Parent(s): f6b2f01
Files changed (4) hide show
  1. .gitattributes +2 -0
  2. app.py +61 -0
  3. requirements.txt +5 -0
  4. xgboost_model.json +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ xgboost_model.json filter=lfs diff=lfs merge=lfs -text
37
+ xgboost_model filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import StringIO
2
+ import gradio as gr
3
+ import pandas as pd
4
+ import xgboost as xgb
5
+ # Add this import
6
+
7
+ def preprocess_data(df):
8
+
9
+
10
+ # Assuming the model expects the input without the first 50 columns
11
+ processed_data = df.drop(df.columns[0:50], axis=1)
12
+
13
+ # Assuming you want the last column as the target.
14
+ X = processed_data.drop(processed_data.columns[-1], axis=1).values
15
+ y = processed_data[processed_data.columns[-1]].values
16
+
17
+
18
+ return (X, y)
19
+
20
+
21
+
22
+ def process_csv_text(temp_file):
23
+ if isinstance(temp_file, str):
24
+ df = pd.read_csv(StringIO(temp_file))
25
+ else:
26
+ df = pd.read_csv(temp_file.name)
27
+ print(df)
28
+ return df
29
+
30
+
31
+ def predict_interface(input_csv):
32
+ print(type(input_csv))
33
+ loaded_model = xgb.XGBRegressor()
34
+ loaded_model.load_model('xgboost_model.json')
35
+
36
+ # Check if the file is non-empty and has recognizable data
37
+ try:
38
+ # Load the csv content into a DataFrame
39
+ data = process_csv_text(input_csv)
40
+ if data is None:
41
+ return "Uploaded file is empty or not recognized as a valid CSV."
42
+
43
+ # Continue with the rest of the processing
44
+ processed_data = preprocess_data(data)
45
+ predictions = loaded_model.predict(processed_data[0]) # Access the X part
46
+ data['Predictions'] = predictions
47
+ data['Actual'] = processed_data[1] # Access the y part
48
+ return data.to_html()
49
+ except Exception as e:
50
+ return str(e)
51
+
52
+
53
+ # Define the Gradio interface
54
+ iface = gr.Interface(
55
+ fn=predict_interface,
56
+ inputs="file",
57
+ outputs="html",
58
+ live=True
59
+ )
60
+
61
+ iface.launch(server_name="0.0.0.0", server_port=7860)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ xgboost==1.7.6
2
+ gradio
3
+ scikit-learn==1.2.2
4
+ numpy
5
+
xgboost_model.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d57f4ca019ba072956f422926ebc155ed8af4ce0bb954934d7e04a0f1458df52
3
+ size 15378107