from io import StringIO import gradio as gr import pandas as pd import xgboost as xgb # Add this import def preprocess_data(df): # Assuming the model expects the input without the first 50 columns processed_data = df.drop(df.columns[0:50], axis=1) # Assuming you want the last column as the target. X = processed_data.drop(processed_data.columns[-1], axis=1).values y = processed_data[processed_data.columns[-1]].values return (X, y) def process_csv_text(temp_file): if isinstance(temp_file, str): df = pd.read_csv(StringIO(temp_file)) else: df = pd.read_csv(temp_file.name) print(df) return df def predict_interface(input_csv): print(type(input_csv)) loaded_model = xgb.XGBRegressor() loaded_model.load_model('xgboost_model.json') # Check if the file is non-empty and has recognizable data try: # Load the csv content into a DataFrame data = process_csv_text(input_csv) if data is None: return "Uploaded file is empty or not recognized as a valid CSV." # Continue with the rest of the processing processed_data = preprocess_data(data) predictions = loaded_model.predict(processed_data[0]) # Access the X part data['Predictions'] = predictions data['Actual'] = processed_data[1] # Access the y part return data.to_html() except Exception as e: return str(e) # Define the Gradio interface iface = gr.Interface( fn=predict_interface, inputs="file", outputs="html", live=True ) iface.launch(server_name="0.0.0.0", server_port=7860)