Spaces:
Sleeping
Sleeping
File size: 5,068 Bytes
21a5563 c8ae30a 21a5563 c48bfa8 21a5563 c48bfa8 21a5563 c48bfa8 21a5563 c48bfa8 21a5563 c48bfa8 a74faaa c48bfa8 21a5563 c48bfa8 21a5563 c48bfa8 21a5563 c48bfa8 21a5563 c8ae30a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
choices_base_models = {
'groloch/Llama-3.2-3B-Instruct-PromptEnhancing': 'meta-llama/Llama-3.2-3B-Instruct',
'groloch/gemma-2-2b-it-PromptEnhancing': 'google/gemma-2-2b-it',
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing': 'Qwen/Qwen2.5-3B-Instruct',
'groloch/Ministral-3b-instruct-PromptEnhancing': 'ministral/Ministral-3b-instruct'
}
choices_gen_token = {
'groloch/Llama-3.2-3B-Instruct-PromptEnhancing': 'assistant',
'groloch/gemma-2-2b-it-PromptEnhancing': 'model',
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing': 'assistant',
'groloch/Ministral-3b-instruct-PromptEnhancing': 'ministral/Ministral-3b-instruct'
}
gated_models = [
'groloch/Llama-3.2-3B-Instruct-PromptEnhancing',
'groloch/gemma-2-2b-it-PromptEnhancing'
]
previous_choice = ''
model = None
tokenizer = None
logged_in = False
def load_model(adapter_repo_id: str):
global model, tokenizer
base_repo_id = choices_base_models[adapter_repo_id]
tokenizer = AutoTokenizer.from_pretrained(base_repo_id)
model = AutoModelForCausalLM.from_pretrained(base_repo_id, torch_dtype=torch.bfloat16)
model.load_adapter(adapter_repo_id)
def generate(prompt_to_enhance: str,
choice: str,
max_tokens: float,
temperature: float,
top_p: float,
repetition_penalty: float,
access_token: str
):
if prompt_to_enhance is None or prompt_to_enhance == '':
raise gr.Error('Please enter a prompt')
global previous_choice
if choice != previous_choice:
previous_choice = choice
load_model(choice)
if choice in gated_models and access_token == '':
raise gr.Error(f'Please enter your access token (in Additional inputs) if youre using one of the following \
models: {", ".join(gated_models)}. Make sure you have access to those models.')
global logged_in
if not logged_in and choice in gated_models:
login(access_token)
logged_in = True
chat = [
{'role' : 'user', 'content': prompt_to_enhance}
]
prompt = tokenizer.apply_chat_template(chat,
tokenize=False,
add_generation_prompt=True,
return_tensors='pt')
encoding = tokenizer(prompt, return_tensors="pt")
generation_config = model.generation_config
generation_config.do_sample = True
generation_config.max_new_tokens = int(max_tokens)
generation_config.temperature = float(temperature)
generation_config.top_p = float(top_p)
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
generation_config.repetition_penalty = float(repetition_penalty)
with torch.inference_mode():
outputs = model.generate(
input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
generation_config=generation_config
)
return tokenizer.decode(outputs[0], skip_special_tokens=True).split(choices_gen_token[choice])[-1]
#
# Inputs
#
model_choice = gr.Dropdown(
label='Model choice',
choices=['groloch/Llama-3.2-3B-Instruct-PromptEnhancing',
'groloch/gemma-2-2b-it-PromptEnhancing',
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing',
'groloch/Ministral-3b-instruct-PromptEnhancing'
],
value='groloch/Llama-3.2-3B-Instruct-PromptEnhancing'
)
input_prompt = gr.Text(
label='Prompt to enhance'
)
#
# Additional inputs
#
input_max_tokens = gr.Number(
label='Max generated tokens',
value=64,
minimum=16,
maximum=128
)
input_temperature = gr.Number(
label='Temperature',
value=0.3,
minimum=0.0,
maximum=1.5,
step=0.05
)
input_top_p = gr.Number(
label='Top p',
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05
)
input_repetition_penalty = gr.Number(
label='Repetition penalty',
value=2.0,
minimum=0.0,
maximum=5.0,
step=0.1
)
input_access_token = gr.Text(
label='Access token for gated models',
value=''
)
demo = gr.Interface(
generate,
title='Prompt Enhancing Playground',
description='This space is a tool to compare the different prompt enhancing model I have finetuned. \
Feel free to experiment as you want ! \n\
If you want to use this locally, you can download the gpu version (see in files)',
inputs=[input_prompt, model_choice],
additional_inputs=[input_max_tokens,
input_temperature,
input_top_p,
input_repetition_penalty,
input_access_token
],
outputs=['text']
)
if __name__ == "__main__":
demo.launch()
|