File size: 8,744 Bytes
6b60649
 
 
 
 
 
 
 
 
 
 
 
 
cf1b5d1
6b60649
 
 
a3d7ad5
6b60649
 
 
 
 
 
a3d7ad5
 
6b60649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d7ad5
6b60649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d7ad5
 
 
6b60649
 
 
 
 
 
 
 
 
 
 
 
a3d7ad5
6b60649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08b66b
6b60649
 
 
 
 
 
 
 
 
 
c09a375
6b60649
 
 
 
a3d7ad5
6b60649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union

import google.generativeai as genai
import gradio as gr
from PIL import Image

print("google-generativeai:", genai.__version__)

GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")

TITLE = """<h1 align="center">ReffidGPT Chat</h1>"""

AVATAR_IMAGES = (
    None,
    "https://i.postimg.cc/wT1WbBdL/20240603-204837.png"
)

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]

# Default system prompt (integrated into the bot function directly)
SYSTEM_PROMPT = "You are ReffidGPT, a helpful assistant. Respond in a friendly and informative manner. Your Name ReffidGPT & Your Creator Is Groqcin Technologies Inc."

def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    if not stop_sequences:
        return None
    return [sequence.strip() for sequence in stop_sequences.split(",")]

def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    image_height = int(image.height * IMAGE_WIDTH / image.width)
    return image.resize((IMAGE_WIDTH, image_height))

def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path

def preprocess_chat_history(
    history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
    messages = []
    for user_message, model_message in history:
        if isinstance(user_message, tuple):
            pass
        elif user_message is not None:
            messages.append({'role': 'user', 'parts': [user_message]})
        if model_message is not None:
            messages.append({'role': 'user', 'parts': [model_message]})
    return messages

def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert('RGB')
        image = preprocess_image(image)
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot

def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

def bot(
    google_key: str,
    files: Optional[List[str]],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: CHAT_HISTORY
):
    if len(chatbot) == 0:
        return chatbot

    google_key = google_key if google_key else GOOGLE_API_KEY
    if not google_key:
        raise ValueError(
            "GOOGLE_API_KEY is not set. "
            "Please follow the instructions in the README to set it up.")

    genai.configure(api_key=google_key)
    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
        top_k=top_k,
        top_p=top_p)

    # Integrate system prompt directly in the input to the model
    system_prompt_message = [{'role': 'user', 'parts': [SYSTEM_PROMPT]}]

    if files:
        text_prompt = [chatbot[-1][0]] \
            if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
            else []
        image_prompt = [Image.open(file).convert('RGB') for file in files]
        model = genai.GenerativeModel('gemini-pro-vision')
        response = model.generate_content(
            text_prompt + image_prompt,
            stream=True,
            generation_config=generation_config)
    else:
        messages = preprocess_chat_history(chatbot)
        messages = system_prompt_message + messages  # Prepend system prompt
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            messages,
            stream=True,
            generation_config=generation_config)

    # streaming effect
    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot

google_key_component = gr.Textbox(
    label="GOOGLE API KEY",
    value="",
    type="password",
    placeholder="...",
    info="You have to provide your own GOOGLE_API_KEY for this app to function properly.",
    visible=GOOGLE_API_KEY is None
)
chatbot_component = gr.Chatbot(
    label='ReffidGPT',
    bubble_full_width=False,
    avatar_images=AVATAR_IMAGES,
    scale=2,
    height=400
)
text_prompt_component = gr.Textbox(
    placeholder="Hey ReffidGPT! [press Enter or Send]", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
    label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
temperature_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.4,
    step=0.05,
    label="Temperature",
    info=(
        "Temperature controls the degree of randomness in token selection. Lower "
        "temperatures are good for prompts that expect a true or correct response, "
        "while higher temperatures can lead to more diverse or unexpected results. "
    ))
max_output_tokens_component = gr.Slider(
    minimum=1,
    maximum=2048,
    value=1024,
    step=1,
    label="Token limit",
    info=(
        "Token limit determines the maximum amount of text output from one prompt. A "
        "token is approximately four characters. The default value is 2048."
    ))
stop_sequences_component = gr.Textbox(
    label="Add stop sequence",
    value="",
    type="text",
    placeholder="STOP, END",
    info=(
        "A stop sequence is a series of characters (including spaces) that stops "
        "response generation if the model encounters it. The sequence is not included "
        "as part of the response. You can add up to five stop sequences."
    ))
top_k_component = gr.Slider(
    minimum=1,
    maximum=40,
    value=32,
    step=1,
    label="Top-K",
    info=(
        "Top-k changes how the model selects tokens for output. A top-k of 1 means the "
        "selected token is the most probable among all tokens in the model’s "
        "vocabulary (also called greedy decoding), while a top-k of 3 means that the "
        "next token is selected from among the 3 most probable tokens (using "
        "temperature)."
    ))
top_p_component = gr.Slider(
    minimum=0,
    maximum=1,
    value=1,
    step=0.01,
    label="Top-P",
    info=(
        "Top-p changes how the model selects tokens for output. Tokens are selected "
        "from most probable to least until the sum of their probabilities equals the "
        "top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
        "and .1 and the top-p value is .5, then the model will select either A or B as "
        "the next token (using temperature). "
    ))

user_inputs = [
    text_prompt_component,
    chatbot_component
]

bot_inputs = [
    google_key_component,
    upload_button_component,
    temperature_component,
    max_output_tokens_component,
    stop_sequences_component,
    top_k_component,
    top_p_component,
    chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    with gr.Column():
        google_key_component.render()
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()
        with gr.Accordion("Parameters", open=False):
            temperature_component.render()
            max_output_tokens_component.render()
            stop_sequences_component.render()
            with gr.Accordion("Advanced", open=False):
                top_k_component.render()
                top_p_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[chatbot_component],
        queue=False
    )

demo.queue(max_size=99).launch(debug=False, show_error=True)