Spaces:
Sleeping
Sleeping
grpathak22
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import AutoTokenizer, MT5ForConditionalGeneration
|
2 |
from transformers import T5Tokenizer
|
3 |
import streamlit as st
|
@@ -8,63 +9,6 @@ from datasets import Dataset, DatasetDict
|
|
8 |
from transformers import Trainer, TrainingArguments
|
9 |
|
10 |
|
11 |
-
tokenizer = T5Tokenizer.from_pretrained('google/mt5-base')
|
12 |
-
model = MT5ForConditionalGeneration.from_pretrained("google/mt5-base")
|
13 |
-
#st.write(model)
|
14 |
-
|
15 |
-
df = pd.read_csv('proverbs.csv')
|
16 |
-
df
|
17 |
-
dataset = Dataset.from_pandas(df)
|
18 |
-
|
19 |
-
def preprocess_function(examples):
|
20 |
-
inputs = examples['Proverb']
|
21 |
-
targets = examples['Meaning']
|
22 |
-
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding="max_length")
|
23 |
-
with tokenizer.as_target_tokenizer():
|
24 |
-
labels = tokenizer(targets, max_length=128, truncation=True, padding="max_length")
|
25 |
-
model_inputs["labels"] = labels["input_ids"]
|
26 |
-
return model_inputs
|
27 |
-
|
28 |
-
|
29 |
-
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
30 |
-
|
31 |
-
|
32 |
-
dataset_split = tokenized_dataset.train_test_split(test_size=0.2)
|
33 |
-
|
34 |
-
|
35 |
-
train_dataset = dataset_split['train']
|
36 |
-
test_dataset = dataset_split['test']
|
37 |
-
|
38 |
-
|
39 |
-
print(f"Training dataset size: {len(train_dataset)}")
|
40 |
-
print(f"Testing dataset size: {len(test_dataset)}")
|
41 |
-
|
42 |
-
training_args = TrainingArguments(
|
43 |
-
output_dir="./results",
|
44 |
-
evaluation_strategy="epoch",
|
45 |
-
learning_rate=2e-5,
|
46 |
-
per_device_train_batch_size=4,
|
47 |
-
per_device_eval_batch_size=4,
|
48 |
-
num_train_epochs=3,
|
49 |
-
weight_decay=0.01,
|
50 |
-
save_total_limit=2,
|
51 |
-
save_steps=500,
|
52 |
-
)
|
53 |
-
|
54 |
-
# Initialize Trainer
|
55 |
-
trainer = Trainer(
|
56 |
-
model=model,
|
57 |
-
args=training_args,
|
58 |
-
train_dataset=tokenized_dataset,
|
59 |
-
eval_dataset=tokenized_dataset, # Typically you'd have a separate eval dataset
|
60 |
-
)
|
61 |
-
|
62 |
-
# Fine-tune the model
|
63 |
-
trainer.train()
|
64 |
-
|
65 |
-
model.save_pretrained("./fine-tuned-mt5-marathi-proverbs")
|
66 |
-
tokenizer.save_pretrained("./fine-tuned-mt5-marathi-proverbs")
|
67 |
-
|
68 |
prompt = st.text_input("Enter your proverb: ")
|
69 |
|
70 |
# Tokenize the input prompt
|
|
|
1 |
+
import modelrun.py
|
2 |
from transformers import AutoTokenizer, MT5ForConditionalGeneration
|
3 |
from transformers import T5Tokenizer
|
4 |
import streamlit as st
|
|
|
9 |
from transformers import Trainer, TrainingArguments
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
prompt = st.text_input("Enter your proverb: ")
|
13 |
|
14 |
# Tokenize the input prompt
|