import torch import json import cv2 from torchvision import models, transforms from PIL import Image, ImageOps import numpy as np import streamlit as st ## face detector face_cascade = cv2.CascadeClassifier("models/haarcascade_frontalface_alt.xml") def face_detector(img): img = np.asarray(img) gray = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) faces = face_cascade.detectMultiScale(gray) return len(faces) > 0 ## preprocessing for pytorch models def transform_img(img): preprocess = transforms.Compose( [ transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) return preprocess(img).unsqueeze(0) ## dog detector VGG16 = models.vgg16(pretrained=True) VGG16.eval() def dog_detector(img): pred_proba = VGG16(img).detach().numpy() pred = np.argmax(pred_proba) pred = 151 <= pred <= 268 return pred ## breed model_transfer = torch.load( "models/model_transfer.pth", map_location=torch.device("cpu") ) model_transfer.eval() with open("models/classes.json", "r") as f: class_names = json.load(f) def predict_breed_transfer(img): pred_proba = model_transfer(img) _, pred = torch.topk(pred_proba, dim=1, k=1) pred = str(pred.detach().numpy()[0][0]) pred = class_names[pred] return pred ## final predictor def run_app(img): human = face_detector(img) img = transform_img(img) dog = dog_detector(img) if dog + human > 0: dog_breed = predict_breed_transfer(img) if dog: st.header("hello, dog!") else: st.header("hello, human!") st.header(f"You look like a {dog_breed}") else: st.header("um, what are you? Are you an alien!")